Skip to content

Commit

Permalink
Add curriculum learning callback
Browse files Browse the repository at this point in the history
  • Loading branch information
b-chu committed Jun 12, 2024
1 parent 5571101 commit 00a3b59
Show file tree
Hide file tree
Showing 4 changed files with 191 additions and 70 deletions.
248 changes: 182 additions & 66 deletions llmfoundry/callbacks/curriculum_learning_callback.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,22 +8,27 @@
"""

import logging
from typing import Any, Dict
import copy
from typing import Any

from composer.core import State
from composer.loggers import Logger
from composer import DataSpec
from composer.core import State, Time, TimeUnit, ensure_time
from composer.loggers import Logger, MosaicMLLogger
from composer.trainer.trainer import _get_initial_device_train_microbatch_size
from streaming import StreamingDataset
from streaming.base.util import clean_stale_shared_memory
from torch.utils.data import DataLoader

from llmfoundry.data.dataloader import build_dataloader
from llmfoundry.interfaces import CallbackWithConfig
from llmfoundry.utils.warnings import experimental_class
from llmfoundry.utils.config_utils import calculate_batch_size_info
from llmfoundry.utils.exceptions import BaseContextualError, TrainDataLoaderLocation

log = logging.getLogger(__name__)

__all__ = ['CurriculumLearning']


@experimental_class('CurriculumLearning callback')
class CurriculumLearning(CallbackWithConfig):
"""Starts an epoch with a different dataset when resuming from a checkpoint.
Expand All @@ -34,20 +39,182 @@ class CurriculumLearning(CallbackWithConfig):
dataset_index (int): The index of the dataset currently being used.
"""

def __init__(self, train_config: Dict, dataset_index: int):
self.dataset_index = dataset_index
self.saved_dataset_index = 0
self.all_dataset_configs = []
self.current_dataset_state = {}
# The current dataset config is resolved and passed in train.py
self.current_dataset_config = train_config['train_loader']
def __init__(
self, train_config: dict[str, Any], duration: str | int | Time,
schedule: list[dict[str, Any]]
):
from llmfoundry.utils.builders import build_tokenizer
non_positive_error = ValueError('The duration must be positive.')
unit_error = ValueError(
'Schedules can only be defined in terms of epochs or tokens.'
)

# Ensure all duration values are positive
# Ensure all duration units are in epochs or tokens
self._duration = ensure_time(duration, TimeUnit.EPOCH)
if self._duration.value <= 0:
raise non_positive_error
if self._duration.unit != TimeUnit.EPOCH and self._duration.unit != TimeUnit.TOKEN:
raise unit_error

self._schedule = schedule
for datamix in self._schedule:
assert 'duration' in datamix, 'Each datamix must have a duration.'
datamix['duration'] = ensure_time(
datamix['duration'], TimeUnit.EPOCH
)
if datamix['duration'].value <= 0:
raise non_positive_error
if datamix['duration'].unit != TimeUnit.EPOCH and datamix[
'duration'].unit != TimeUnit.TOKEN:
raise unit_error
assert 'train_loader' in datamix, 'Each datamix must have a train_loader.'

self._schedule_index = -1

# Copied from llmfoundry/utils/config_utils.py
self.device_train_batch_size, _, _ = calculate_batch_size_info(
train_config['global_train_batch_size'],
train_config['device_train_microbatch_size'],
data_replication_degree=1,
)

# Copied from scripts/train/train.py
tokenizer_name = train_config['tokenizer']['name']
tokenizer_kwargs = train_config['tokenizer'].get('kwargs', {})
self.tokenizer = build_tokenizer(tokenizer_name, tokenizer_kwargs)

def before_load(self, state: State, logger: Logger):
del logger

# Save the current dataset state so we can restore it correctly
# if we are resuming with a new dataset.
train_loader = state.train_dataloader
# Ensure all duration units are the same as max_duration
units_match = True
assert state.max_duration is not None, 'max_duration should have beeen set.'
if self._duration.unit != state.max_duration.unit:
units_match = False
for datamix in self._schedule:
if datamix['duration'].unit != state.max_duration.unit:
units_match = False
if not units_match:
raise ValueError((
'All durations in the schedule must have the same units as '
'the max_duration.'
))

# Ensure schedule duration is greater than max_duration
schedule_duration = self._duration
for datamix in self._schedule:
assert isinstance(datamix['duration'], Time)
schedule_duration += datamix['duration']
if schedule_duration < state.max_duration:
raise ValueError((
'The sum of all durations in the schedule must be greater than '
'or equal to the max_duration.'
))

self._validate_dataloader(state.train_dataloader)

def after_load(self, state: State, logger: Logger):
del logger

self._validate_dataloader(state.train_dataloader)

# Check if adding a new datamix to a run that didn't use this callback
if self._schedule_index == -1 and state.timestamp >= self._duration:
self._schedule_index = 0
state.timestamp = state.timestamp.to_next_iteration()
# If checkpoint was saved before iteration was incremented, we need to increment it now
elif ((
self._schedule[self._schedule_index]['duration'].unit
== TimeUnit.TOKEN and state.timestamp.token_in_iteration
>= self._schedule[self._schedule_index]['duration'].value
) or (
self._schedule[self._schedule_index]['duration'].unit
== TimeUnit.EPOCH and state.timestamp.epoch_in_iteration
>= self._schedule[self._schedule_index]['duration'].value
)):
log.warning((
'The CurriculumLearning callback has detected that the previous run did not correctly '
'increment the iteration.'
))
self._schedule_index += 1
state.timestamp = state.timestamp.to_next_iteration()

def iteration_start(self, state: State, logger: Logger):
# Reset and initialize state train dataloader
log.warning(
'trainer._train_data_spec should be updated whenever the dataloader is updated'
)

# Swap the dataset if starting a new iteration that's not the original datamix
if self._schedule_index >= 0:
clean_stale_shared_memory()
data_spec = self._build_train_loader(
train_loader_config=copy.deepcopy(
self._schedule[self._schedule_index]
)['train_loader'],
logger=logger,
)
state.set_dataloader(
dataloader=data_spec.dataloader,
dataloader_label='train',
)
# state.train_dataloader = state.dataloader
state.device_train_microbatch_size = _get_initial_device_train_microbatch_size(
state.device_train_microbatch_size,
state.auto_microbatching,
state.train_dataloader,
)
self._validate_dataloader(state.train_dataloader)

# Set the length of the new iteration
if self._schedule_index == -1:
state._iteration_length = self._duration
else:
state._iteration_length = self._schedule[self._schedule_index
]['duration']

def iteration_end(self, state: State, logger: Logger):
del state, logger # unused

self._schedule_index += 1

def state_dict(self):
return {
'duration': self._duration,
'schedule': self._schedule,
'schedule_index': self._schedule_index,
}

def load_state_dict(self, state: dict[str, Any]):
# Ensure that the schedule has not changed on already trained datamixes
assert self._duration == state['duration']
for idx in range(state['schedule_index'] + 1):
assert self._schedule[idx] == state['schedule'][idx]

self._schedule_index = state['schedule_index']

def _build_train_loader(
self, train_loader_config: dict[str, Any], logger: Logger
) -> DataSpec:
# Copied from scripts/train/train.py
log.info(
f'Building train loader in CurriculumLearning callback for dataset {self._schedule_index}'
)
try:
return build_dataloader(
train_loader_config,
self.tokenizer,
self.device_train_batch_size,
)
except BaseContextualError as e:
for destination in logger.destinations:
if isinstance(destination, MosaicMLLogger):
e.location = TrainDataLoaderLocation
destination.log_exception(e)
raise e

def _validate_dataloader(self, train_loader: Any):
# Check if we are using a DataLoader and StreamingDataset
if not isinstance(train_loader, DataLoader):
raise ValueError(
Expand All @@ -61,54 +228,3 @@ def before_load(self, state: State, logger: Logger):
f'because it requires loading and saving dataset state. ',
f'Instead, got a dataset of type {type(dataset)}',
)
assert isinstance(dataset, StreamingDataset)
# Save the current dataset state so we can restore it if needed.
self.current_dataset_state = dataset.state_dict( # type: ignore
num_samples=0, from_beginning=False)

def after_load(self, state: State, logger: Logger):
del logger

# As saved_dataset_index is loaded from state_dict, this only runs when
# a user explicitly increments the dataset_index and not on any other
# resumption, including autoresume.
train_loader = state._train_dataloader
assert isinstance(
train_loader,
DataLoader,
), 'CurriculumLearning callback requires a DataLoader.'
dataset = train_loader.dataset
assert isinstance(
dataset,
StreamingDataset,
), 'CurriculumLearning callback requires a StreamingDataset.'
if self.saved_dataset_index < self.dataset_index:
# Ignore the dataset state that was read in from the checkpoint, and
# replace with the new dataset state. This preserves resumption info.
if self.current_dataset_state['epoch'] < 0:
# Make sure the epoch in the loaded state dict is not negative.
# Since `__iter__` has not yet been called on the dataset, the
# epoch index in the dataset will still be -1. We need to ensure
# that we set the epoch correctly to 0 in this case.
self.current_dataset_state['epoch'] = 0
dataset.load_state_dict( # type: ignore
self.current_dataset_state)
# Start a new epoch since we are using a new dataset.
# This will also reset the sample_in_epoch written to checkpoint,
# making sure that subsequent resumptions proceed correctly.
state.timestamp = state.timestamp.to_next_epoch()
# Append the new dataset config to the list of all dataset configs.
self.all_dataset_configs.append(self.current_dataset_config)
elif self.dataset_index == 0 and len(self.all_dataset_configs) == 0:
# Make sure to track our current dataset config if we are just starting training.
self.all_dataset_configs.append(self.current_dataset_config)

def state_dict(self):
return {
'dataset_index': self.dataset_index,
'all_dataset_configs': self.all_dataset_configs,
}

def load_state_dict(self, state: Dict[str, Any]):
self.saved_dataset_index = state.get('dataset_index', 0)
self.all_dataset_configs = state.get('all_dataset_configs', [])
7 changes: 4 additions & 3 deletions llmfoundry/models/mpt/modeling_mpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -580,8 +580,9 @@ def forward(
'sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True '
+ 'and the model is in train mode.',
)
elif (self.attn_uses_sequence_id is
False) and (sequence_id is not None):
elif (
self.attn_uses_sequence_id is False and sequence_id is not None
):
warnings.warn(
'MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. '
+
Expand Down Expand Up @@ -1092,7 +1093,7 @@ def __init__(

additional_train_metrics = additional_train_metrics or []

model = self.model_class(self.config_class(**kwargs),)
model = self.model_class(self.config_class(**kwargs))

use_train_metrics = use_train_metrics
train_metric_names = DEFAULT_CAUSAL_LM_TRAIN_METRICS + additional_train_metrics
Expand Down
4 changes: 4 additions & 0 deletions llmfoundry/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,11 @@
# SPDX-License-Identifier: Apache-2.0

from llmfoundry.utils.builders import (
add_metrics_to_eval_loaders,
build_algorithm,
build_callback,
build_composer_model,
build_eval_loaders,
build_evaluators,
build_icl_data_and_gauntlet,
build_icl_evaluators,
Expand Down Expand Up @@ -60,8 +62,10 @@
)

__all__ = [
'add_metrics_to_eval_loaders',
'build_algorithm',
'build_callback',
'build_eval_loaders',
'build_evaluators',
'build_icl_data_and_gauntlet',
'build_icl_evaluators',
Expand Down
2 changes: 1 addition & 1 deletion tests/callbacks/test_curriculum_learning_callback.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@


def test_curriculum_learning_callback_builds():
kwargs = {'dataset_index': 0}
kwargs = {'duration': '1ep'}
callback = build_callback(
'curriculum_learning',
kwargs=kwargs,
Expand Down

0 comments on commit 00a3b59

Please sign in to comment.