forked from apache/druid
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
explicit outputType for ExpressionPostAggregator, better documentatio…
…n for the differences between arrays and mvds (apache#15245) * better documentation for the differences between arrays and mvds * add outputType to ExpressionPostAggregator to make docs true * add output coercion if outputType is defined on ExpressionPostAgg * updated post-aggregations.md to be consistent with aggregations.md and filters.md and use tables
- Loading branch information
1 parent
22443ab
commit d261587
Showing
33 changed files
with
1,117 additions
and
420 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,253 @@ | ||
--- | ||
id: arrays | ||
title: "Arrays" | ||
--- | ||
|
||
<!-- | ||
~ Licensed to the Apache Software Foundation (ASF) under one | ||
~ or more contributor license agreements. See the NOTICE file | ||
~ distributed with this work for additional information | ||
~ regarding copyright ownership. The ASF licenses this file | ||
~ to you under the Apache License, Version 2.0 (the | ||
~ "License"); you may not use this file except in compliance | ||
~ with the License. You may obtain a copy of the License at | ||
~ | ||
~ http://www.apache.org/licenses/LICENSE-2.0 | ||
~ | ||
~ Unless required by applicable law or agreed to in writing, | ||
~ software distributed under the License is distributed on an | ||
~ "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
~ KIND, either express or implied. See the License for the | ||
~ specific language governing permissions and limitations | ||
~ under the License. | ||
--> | ||
|
||
|
||
Apache Druid supports SQL standard `ARRAY` typed columns for `VARCHAR`, `BIGINT`, and `DOUBLE` types (native types `ARRAY<STRING>`, `ARRAY<LONG>`, and `ARRAY<DOUBLE>`). Other more complicated ARRAY types must be stored in [nested columns](nested-columns.md). Druid ARRAY types are distinct from [multi-value dimension](multi-value-dimensions.md), which have significantly different behavior than standard arrays. | ||
|
||
This document describes inserting, filtering, and grouping behavior for `ARRAY` typed columns. | ||
Refer to the [Druid SQL data type documentation](sql-data-types.md#arrays) and [SQL array function reference](sql-array-functions.md) for additional details | ||
about the functions available to use with ARRAY columns and types in SQL. | ||
|
||
The following sections describe inserting, filtering, and grouping behavior based on the following example data, which includes 3 array typed columns: | ||
|
||
```json lines | ||
{"timestamp": "2023-01-01T00:00:00", "label": "row1", "arrayString": ["a", "b"], "arrayLong":[1, null,3], "arrayDouble":[1.1, 2.2, null]} | ||
{"timestamp": "2023-01-01T00:00:00", "label": "row2", "arrayString": [null, "b"], "arrayLong":null, "arrayDouble":[999, null, 5.5]} | ||
{"timestamp": "2023-01-01T00:00:00", "label": "row3", "arrayString": [], "arrayLong":[1, 2, 3], "arrayDouble":[null, 2.2, 1.1]} | ||
{"timestamp": "2023-01-01T00:00:00", "label": "row4", "arrayString": ["a", "b"], "arrayLong":[1, 2, 3], "arrayDouble":[]} | ||
{"timestamp": "2023-01-01T00:00:00", "label": "row5", "arrayString": null, "arrayLong":[], "arrayDouble":null} | ||
``` | ||
|
||
## Ingesting arrays | ||
|
||
### Native batch and streaming ingestion | ||
When using native [batch](../ingestion/native-batch.md) or streaming ingestion such as with [Apache Kafka](../development/extensions-core/kafka-ingestion.md), arrays can be ingested using the [`"auto"`](../ingestion/ingestion-spec.md#dimension-objects) type dimension schema which is shared with [type-aware schema discovery](../ingestion/schema-design.md#type-aware-schema-discovery). | ||
|
||
When ingesting from TSV or CSV data, you can specify the array delimiters using the `listDelimiter` field in the `inputFormat`. JSON data must be formatted as a JSON array to be ingested as an array type. JSON data does not require `inputFormat` configuration. | ||
|
||
The following shows an example `dimensionsSpec` for native ingestion of the data used in this document: | ||
|
||
``` | ||
"dimensions": [ | ||
{ | ||
"type": "auto", | ||
"name": "label" | ||
}, | ||
{ | ||
"type": "auto", | ||
"name": "arrayString" | ||
}, | ||
{ | ||
"type": "auto", | ||
"name": "arrayLong" | ||
}, | ||
{ | ||
"type": "auto", | ||
"name": "arrayDouble" | ||
} | ||
], | ||
``` | ||
|
||
### SQL-based ingestion | ||
|
||
Arrays can also be inserted with [SQL-based ingestion](../multi-stage-query/index.md) when you include a query context parameter [`"arrayIngestMode":"array"`](../multi-stage-query/reference.md#context-parameters). | ||
|
||
For example, to insert the data used in this document: | ||
```sql | ||
REPLACE INTO "array_example" OVERWRITE ALL | ||
WITH "ext" AS ( | ||
SELECT * | ||
FROM TABLE( | ||
EXTERN( | ||
'{"type":"inline","data":"{\"timestamp\": \"2023-01-01T00:00:00\", \"label\": \"row1\", \"arrayString\": [\"a\", \"b\"], \"arrayLong\":[1, null,3], \"arrayDouble\":[1.1, 2.2, null]}\n{\"timestamp\": \"2023-01-01T00:00:00\", \"label\": \"row2\", \"arrayString\": [null, \"b\"], \"arrayLong\":null, \"arrayDouble\":[999, null, 5.5]}\n{\"timestamp\": \"2023-01-01T00:00:00\", \"label\": \"row3\", \"arrayString\": [], \"arrayLong\":[1, 2, 3], \"arrayDouble\":[null, 2.2, 1.1]} \n{\"timestamp\": \"2023-01-01T00:00:00\", \"label\": \"row4\", \"arrayString\": [\"a\", \"b\"], \"arrayLong\":[1, 2, 3], \"arrayDouble\":[]}\n{\"timestamp\": \"2023-01-01T00:00:00\", \"label\": \"row5\", \"arrayString\": null, \"arrayLong\":[], \"arrayDouble\":null}"}', | ||
'{"type":"json"}', | ||
'[{"name":"timestamp", "type":"STRING"},{"name":"label", "type":"STRING"},{"name":"arrayString", "type":"ARRAY<STRING>"},{"name":"arrayLong", "type":"ARRAY<LONG>"},{"name":"arrayDouble", "type":"ARRAY<DOUBLE>"}]' | ||
) | ||
) | ||
) | ||
SELECT | ||
TIME_PARSE("timestamp") AS "__time", | ||
"label", | ||
"arrayString", | ||
"arrayLong", | ||
"arrayDouble" | ||
FROM "ext" | ||
PARTITIONED BY DAY | ||
``` | ||
|
||
### SQL-based ingestion with rollup | ||
These input arrays can also be grouped for rollup: | ||
|
||
```sql | ||
REPLACE INTO "array_example_rollup" OVERWRITE ALL | ||
WITH "ext" AS ( | ||
SELECT * | ||
FROM TABLE( | ||
EXTERN( | ||
'{"type":"inline","data":"{\"timestamp\": \"2023-01-01T00:00:00\", \"label\": \"row1\", \"arrayString\": [\"a\", \"b\"], \"arrayLong\":[1, null,3], \"arrayDouble\":[1.1, 2.2, null]}\n{\"timestamp\": \"2023-01-01T00:00:00\", \"label\": \"row2\", \"arrayString\": [null, \"b\"], \"arrayLong\":null, \"arrayDouble\":[999, null, 5.5]}\n{\"timestamp\": \"2023-01-01T00:00:00\", \"label\": \"row3\", \"arrayString\": [], \"arrayLong\":[1, 2, 3], \"arrayDouble\":[null, 2.2, 1.1]} \n{\"timestamp\": \"2023-01-01T00:00:00\", \"label\": \"row4\", \"arrayString\": [\"a\", \"b\"], \"arrayLong\":[1, 2, 3], \"arrayDouble\":[]}\n{\"timestamp\": \"2023-01-01T00:00:00\", \"label\": \"row5\", \"arrayString\": null, \"arrayLong\":[], \"arrayDouble\":null}"}', | ||
'{"type":"json"}', | ||
'[{"name":"timestamp", "type":"STRING"},{"name":"label", "type":"STRING"},{"name":"arrayString", "type":"ARRAY<STRING>"},{"name":"arrayLong", "type":"ARRAY<LONG>"},{"name":"arrayDouble", "type":"ARRAY<DOUBLE>"}]' | ||
) | ||
) | ||
) | ||
SELECT | ||
TIME_PARSE("timestamp") AS "__time", | ||
"label", | ||
"arrayString", | ||
"arrayLong", | ||
"arrayDouble", | ||
COUNT(*) as "count" | ||
FROM "ext" | ||
GROUP BY 1,2,3,4,5 | ||
PARTITIONED BY DAY | ||
``` | ||
|
||
|
||
## Querying arrays | ||
|
||
### Filtering | ||
|
||
All query types, as well as [filtered aggregators](aggregations.md#filtered-aggregator), can filter on array typed columns. Filters follow these rules for array types: | ||
|
||
- All filters match against the entire array value for the row | ||
- Native value filters like [equality](filters.md#equality-filter) and [range](filters.md#range-filter) match on entire array values, as do SQL constructs that plan into these native filters | ||
- The [`IS NULL`](filters.md#null-filter) filter will match rows where the entire array value is null | ||
- [Array specific functions](sql-array-functions.md) like `ARRAY_CONTAINS` and `ARRAY_OVERLAP` follow the behavior specified by those functions | ||
- All other filters do not directly support ARRAY types and will result in a query error | ||
|
||
#### Example: equality | ||
```sql | ||
SELECT * | ||
FROM "array_example" | ||
WHERE arrayLong = ARRAY[1,2,3] | ||
``` | ||
|
||
```json lines | ||
{"__time":"2023-01-01T00:00:00.000Z","label":"row3","arrayString":"[]","arrayLong":"[1,2,3]","arrayDouble":"[null,2.2,1.1]"} | ||
{"__time":"2023-01-01T00:00:00.000Z","label":"row4","arrayString":"[\"a\",\"b\"]","arrayLong":"[1,2,3]","arrayDouble":"[]"} | ||
``` | ||
|
||
#### Example: null | ||
```sql | ||
SELECT * | ||
FROM "array_example" | ||
WHERE arrayLong IS NULL | ||
``` | ||
|
||
```json lines | ||
{"__time":"2023-01-01T00:00:00.000Z","label":"row2","arrayString":"[null,\"b\"]","arrayLong":null,"arrayDouble":"[999.0,null,5.5]"} | ||
``` | ||
|
||
#### Example: range | ||
```sql | ||
SELECT * | ||
FROM "array_example" | ||
WHERE arrayString >= ARRAY['a','b'] | ||
``` | ||
|
||
```json lines | ||
{"__time":"2023-01-01T00:00:00.000Z","label":"row1","arrayString":"[\"a\",\"b\"]","arrayLong":"[1,null,3]","arrayDouble":"[1.1,2.2,null]"} | ||
{"__time":"2023-01-01T00:00:00.000Z","label":"row4","arrayString":"[\"a\",\"b\"]","arrayLong":"[1,2,3]","arrayDouble":"[]"} | ||
``` | ||
|
||
#### Example: ARRAY_CONTAINS | ||
```sql | ||
SELECT * | ||
FROM "array_example" | ||
WHERE ARRAY_CONTAINS(arrayString, 'a') | ||
``` | ||
|
||
```json lines | ||
{"__time":"2023-01-01T00:00:00.000Z","label":"row1","arrayString":"[\"a\",\"b\"]","arrayLong":"[1,null,3]","arrayDouble":"[1.1,2.2,null]"} | ||
{"__time":"2023-01-01T00:00:00.000Z","label":"row4","arrayString":"[\"a\",\"b\"]","arrayLong":"[1,2,3]","arrayDouble":"[]"} | ||
``` | ||
|
||
### Grouping | ||
|
||
When grouping on an array with SQL or a native [groupBy query](groupbyquery.md), grouping follows standard SQL behavior and groups on the entire array as a single value. The [`UNNEST`](sql.md#unnest) function allows grouping on the individual array elements. | ||
|
||
#### Example: SQL grouping query with no filtering | ||
```sql | ||
SELECT label, arrayString | ||
FROM "array_example" | ||
GROUP BY 1,2 | ||
``` | ||
results in: | ||
```json lines | ||
{"label":"row1","arrayString":"[\"a\",\"b\"]"} | ||
{"label":"row2","arrayString":"[null,\"b\"]"} | ||
{"label":"row3","arrayString":"[]"} | ||
{"label":"row4","arrayString":"[\"a\",\"b\"]"} | ||
{"label":"row5","arrayString":null} | ||
``` | ||
|
||
#### Example: SQL grouping query with a filter | ||
```sql | ||
SELECT label, arrayString | ||
FROM "array_example" | ||
WHERE arrayLong = ARRAY[1,2,3] | ||
GROUP BY 1,2 | ||
``` | ||
|
||
results: | ||
```json lines | ||
{"label":"row3","arrayString":"[]"} | ||
{"label":"row4","arrayString":"[\"a\",\"b\"]"} | ||
``` | ||
|
||
#### Example: UNNEST | ||
```sql | ||
SELECT label, strings | ||
FROM "array_example" CROSS JOIN UNNEST(arrayString) as u(strings) | ||
GROUP BY 1,2 | ||
``` | ||
|
||
results: | ||
```json lines | ||
{"label":"row1","strings":"a"} | ||
{"label":"row1","strings":"b"} | ||
{"label":"row2","strings":null} | ||
{"label":"row2","strings":"b"} | ||
{"label":"row4","strings":"a"} | ||
{"label":"row4","strings":"b"} | ||
``` | ||
|
||
## Differences between arrays and multi-value dimensions | ||
Avoid confusing string arrays with [multi-value dimensions](multi-value-dimensions.md). Arrays and multi-value dimensions are stored in different column types, and query behavior is different. You can use the functions `MV_TO_ARRAY` and `ARRAY_TO_MV` to convert between the two if needed. In general, we recommend using arrays whenever possible, since they are a newer and more powerful feature and have SQL compliant behavior. | ||
|
||
Use care during ingestion to ensure you get the type you want. | ||
|
||
To get arrays when performing an ingestion using JSON ingestion specs, such as [native batch](../ingestion/native-batch.md) or streaming ingestion such as with [Apache Kafka](../development/extensions-core/kafka-ingestion.md), use dimension type `auto` or enable `useSchemaDiscovery`. When performing a [SQL-based ingestion](../multi-stage-query/index.md), write a query that generates arrays and set the context parameter `"arrayIngestMode": "array"`. Arrays may contain strings or numbers. | ||
|
||
To get multi-value dimensions when performing an ingestion using JSON ingestion specs, use dimension type `string` and do not enable `useSchemaDiscovery`. When performing a [SQL-based ingestion](../multi-stage-query/index.md), wrap arrays in [`ARRAY_TO_MV`](multi-value-dimensions.md#sql-based-ingestion), which ensures you get multi-value dimensions in any `arrayIngestMode`. Multi-value dimensions can only contain strings. | ||
|
||
You can tell which type you have by checking the `INFORMATION_SCHEMA.COLUMNS` table, using a query like: | ||
|
||
```sql | ||
SELECT COLUMN_NAME, DATA_TYPE | ||
FROM INFORMATION_SCHEMA.COLUMNS | ||
WHERE TABLE_NAME = 'mytable' | ||
``` | ||
|
||
Arrays are type `ARRAY`, multi-value strings are type `VARCHAR`. |
Oops, something went wrong.