Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add test of 2 demes w/divergent optima. #1210

Merged
merged 1 commit into from
Nov 3, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 13 additions & 5 deletions fwdpy11/_evolvets.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,11 +155,19 @@ def evolvets(
assert isinstance(r, fwdpy11.mvDES), f"{type(r)}"
assert isinstance(r.des, fwdpy11.Sregion) # type: ignore
nd = demographic_model.number_of_demes()
if nd > params.gvalue.ndemes:
msg = f"maxmimum number of demes in model ({nd})"
msg += " is not compatible with genetic value"
msg += f" number of demes {params.gvalue.ndemes}"
raise ValueError(msg)
if isinstance(params.gvalue, list):
for g in params.gvalue:
if nd > g.ndemes:
msg = f"maxmimum number of demes in model ({nd})"
msg += " is not compatible with genetic value"
msg += f" number of demes {params.gvalue.ndemes}"
raise ValueError(msg)
else:
if nd > params.gvalue.ndemes:
msg = f"maxmimum number of demes in model ({nd})"
msg += " is not compatible with genetic value"
msg += f" number of demes {params.gvalue.ndemes}"
raise ValueError(msg)
if r.des.beg < 0:
raise ValueError(f"{r} has begin value < 0.0")
if r.des.end > pop.tables.genome_length:
Expand Down
79 changes: 79 additions & 0 deletions tests/test_tree_sequences_different_des_in_different_demes.py
Original file line number Diff line number Diff line change
Expand Up @@ -278,5 +278,84 @@ def test_invalid_model(mvDES, gvalue):
fwdpy11.evolvets(rng, pop, params, 100)


def test_two_demes_divergent_optima():
N = 500
rho = 0

yaml = f"""
time_units: generations
demes:
- name: alpha
epochs:
- start_size: {N}
- name: beta
epochs:
- start_size: {N}
migrations:
- demes: [alpha, beta]
rate: 1e-2
"""

demography = fwdpy11.ForwardDemesGraph.from_demes(
yaml, burnin=N + 50, burnin_is_exact=True)

moving_optimum_deme_0 = fwdpy11.GaussianStabilizingSelection(
optima=[
fwdpy11.Optimum(when=0, optimum=0.0, VS=1.0),
fwdpy11.Optimum(when=N, optimum=1.0, VS=1.0),
],
is_single_trait=True,
)
moving_optimum_deme_1 = fwdpy11.GaussianStabilizingSelection(
optima=[
fwdpy11.Optimum(when=0, optimum=0.0, VS=1.0),
fwdpy11.Optimum(when=N, optimum=-1.0, VS=1.0),
],
is_single_trait=True,
)

# The covariance matrix for effect sizes.
# The marginal Gaussians will have mean zero and sd = 0.1
# The deviates will be highly positively correlated.
sd = 0.1
covariance_matrix = np.array([0.999] * 4).reshape((2, 2))
np.fill_diagonal(covariance_matrix, 1)
covariance_matrix *= np.power(sd, 2)

pdict = {
"nregions": [],
"sregions": [
# Multivariate Gaussian distribution of effect sizes
fwdpy11.mvDES(
fwdpy11.MultivariateGaussianEffects(
beg=0, end=1, weight=1, h=1, cov_matrix=covariance_matrix
),
# Means of zero for each marginal Gaussian
np.zeros(2),
)
],
"recregions": [fwdpy11.PoissonInterval(0, 1, rho / (4 * N))],
"rates": (0, 1e-3, None),
"demography": demography,
"simlen": 10 * N + 200, # 200 gens past optimum shift
# Specify one gvalue object per deme
"gvalue": [
fwdpy11.Additive(
ndemes=2, # Number of demes
scaling=2, # 0, 0+sh, 0+2s for AA, Aa, and aa, respectively
# Mapping of trait (genetic) value to fitness
gvalue_to_fitness=moving_optimum_deme_0,
),
fwdpy11.Additive(ndemes=2, scaling=2,
gvalue_to_fitness=moving_optimum_deme_1),
],
}

params = fwdpy11.ModelParams(**pdict)
pop = fwdpy11.DiploidPopulation([N, N], 1.0)
rng = fwdpy11.GSLrng(1010)
fwdpy11.evolvets(rng, pop, params, 100)


if __name__ == "__main__":
unittest.main()
Loading