Skip to content

Commit

Permalink
example: modal llm inference from dbt python model (#816)
Browse files Browse the repository at this point in the history
  • Loading branch information
kramstrom authored Aug 5, 2024
1 parent fe98e6f commit 958d8e8
Show file tree
Hide file tree
Showing 19 changed files with 508 additions and 1 deletion.
2 changes: 1 addition & 1 deletion 06_gpu_and_ml/llm-serving/trtllm_llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -567,7 +567,7 @@ def main():

class GenerateRequest(pydantic.BaseModel):
prompts: list[str]
settings: Optional[dict]
settings: Optional[dict] = None


@app.function(image=web_image)
Expand Down
212 changes: 212 additions & 0 deletions 10_integrations/dbt_modal_inference/dbt_modal_inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,212 @@
# # LLM inference within your data warehouse using dbt python models
#
# In this example we demonstrate how you could combine [dbt's python models](https://docs.getdbt.com/docs/build/python-models)
# with LLM inference models powered by Modal, allowing you to run serverless gpu workloads within dbt.
#
# This example runs [dbt](https://docs.getdbt.com/docs/introduction) with a [DuckDB](https://duckdb.org)
# backend directly on top of Modal, but could be translated to run on any dbt-compatible
# database that supports python models. Similarly you could make these requests from UDFs
# directly in SQL instead if you don't want to use dbt's python models.
#
# In this example we use an LLM deployed in a previous example: [Serverless TensorRT-LLM (LLaMA 3 8B)](https://modal.com/docs/examples/trtllm_llama)
# but you could easily swap this for whichever Modal Function you wish. We use this to classify the sentiment
# for free-text product reviews and aggregate them in subsequent dbt sql models. These product names, descriptions and reviews
# were also generated by an LLM running on Modal!
#
# ## Configure Modal and dbt
#
# We set up the environment variables necessary for dbt and
# create a slim debian and install the packages necessary to run.

import pathlib

import modal

LOCAL_DBT_PROJECT = ( # local path
pathlib.Path(__file__).parent / "dbt_modal_inference_proj"
)
PROJ_PATH = "/root/dbt" # remote paths
VOL_PATH = "/root/vol"
DB_PATH = f"{VOL_PATH}/db"
PROFILES_PATH = "/root/dbt_profile"
TARGET_PATH = f"{VOL_PATH}/target"

# We also define the environment our application will run in --
# a container image, similar to Docker.
# See [this guide](https://modal.com/docs/guide/custom-container) for details.

dbt_image = ( # start from a slim Linux image
modal.Image.debian_slim()
.pip_install( # install python packages
"dbt-duckdb==1.8.1", # dbt with duckdb connector
"pandas==2.2.2", # dataframes
"pyarrow==17.0.0", # columnar data lib
"requests==2.32.3", # http library
)
.env( # configure dbt environment variables
{
"DBT_PROJECT_DIR": PROJ_PATH,
"DBT_PROFILES_DIR": PROFILES_PATH,
"DBT_TARGET_PATH": TARGET_PATH,
"DB_PATH": DB_PATH,
}
)
)

app = modal.App("duckdb-dbt-inference", image=dbt_image)

# We mount the local code and configuration into the Modal Function
# so that it will be available when we run dbt
# and create a volume so that we can persist our data.

dbt_project = modal.Mount.from_local_dir(
LOCAL_DBT_PROJECT, remote_path=PROJ_PATH
)
dbt_profiles = modal.Mount.from_local_file(
local_path=LOCAL_DBT_PROJECT / "profiles.yml",
remote_path=pathlib.Path(PROFILES_PATH, "profiles.yml"),
)
dbt_vol = modal.Volume.from_name("dbt-inference-vol", create_if_missing=True)

# ## Run dbt in a serverless Modal Function
#
# With Modal it's easy to run python code serverless
# and with dbt's [programmatic invocations](https://docs.getdbt.com/reference/programmatic-invocations)
# you can easily run dbt from python instead of using the command line
#
# Using the above configuration we can invoke dbt from Modal
# and use this to run transformations in our warehouse
# The `dbt_run` function does a few things, it:
# 1. creates the directories for storing the DuckDB database and dbt target files
# 2. gets a reference to a deployed Modal Function that serves an LLM inference endpoint
# 3. runs dbt with a variable for the inference url
# 4. prints the output of the final dbt table in the DuckDB parquet output


@app.function(
mounts=[dbt_project, dbt_profiles],
volumes={VOL_PATH: dbt_vol},
)
def dbt_run() -> None:
import os

import duckdb
from dbt.cli.main import dbtRunner

os.makedirs(DB_PATH, exist_ok=True)
os.makedirs(TARGET_PATH, exist_ok=True)

# Remember to either deploy this yourself in your environment
# or change to another web endpoint you have
ref = modal.Function.lookup(
"example-trtllm-Meta-Llama-3-8B-Instruct", "generate_web"
)

res = dbtRunner().invoke(
["run", "--vars", f"{{'inference_url': '{ref.web_url}'}}"]
)
if res.exception:
print(res.exception)

duckdb.sql(
f"select * from '{DB_PATH}/product_reviews_sentiment_agg.parquet';"
).show()


# Running the Modal Function:
# `modal run dbt_modal_inference.py`
# will result in something like:
#
# ```
# 21:25:21 Running with dbt=1.8.4
# 21:25:21 Registered adapter: duckdb=1.8.1
# 21:25:23 Found 5 models, 2 seeds, 6 data tests, 2 sources, 408 macros
# 21:25:23
# 21:25:23 Concurrency: 1 threads (target='dev')
# 21:25:23
# 21:25:23 1 of 5 START sql table model main.stg_products ................................. [RUN]
# 21:25:23 1 of 5 OK created sql table model main.stg_products ............................ [OK in 0.22s]
# 21:25:23 2 of 5 START sql table model main.stg_reviews .................................. [RUN]
# 21:25:23 2 of 5 OK created sql table model main.stg_reviews ............................. [OK in 0.17s]
# 21:25:23 3 of 5 START sql table model main.product_reviews .............................. [RUN]
# 21:25:23 3 of 5 OK created sql table model main.product_reviews ......................... [OK in 0.17s]
# 21:25:23 4 of 5 START python external model main.product_reviews_sentiment .............. [RUN]
# 21:25:32 4 of 5 OK created python external model main.product_reviews_sentiment ......... [OK in 8.83s]
# 21:25:32 5 of 5 START sql external model main.product_reviews_sentiment_agg ............. [RUN]
# 21:25:32 5 of 5 OK created sql external model main.product_reviews_sentiment_agg ........ [OK in 0.16s]
# 21:25:32
# 21:25:32 Finished running 3 table models, 2 external models in 0 hours 0 minutes and 9.76 seconds (9.76s).
# 21:25:33
# 21:25:33 Completed successfully
# 21:25:33
# 21:25:33 Done. PASS=5 WARN=0 ERROR=0 SKIP=0 TOTAL=5
# ┌──────────────┬──────────────────┬─────────────────┬──────────────────┐
# │ product_name │ positive_reviews │ neutral_reviews │ negative_reviews │
# │ varchar │ int64 │ int64 │ int64 │
# ├──────────────┼──────────────────┼─────────────────┼──────────────────┤
# │ Splishy │ 3 │ 0 │ 1 │
# │ Blerp │ 3 │ 1 │ 1 │
# │ Zinga │ 2 │ 0 │ 0 │
# │ Jinkle │ 2 │ 1 │ 1 │
# │ Flish │ 2 │ 2 │ 1 │
# │ Kablooie │ 2 │ 1 │ 1 │
# │ Wizzle │ 2 │ 1 │ 0 │
# │ Snurfle │ 2 │ 1 │ 0 │
# │ Glint │ 2 │ 0 │ 0 │
# │ Flumplenook │ 2 │ 1 │ 1 │
# │ Whirlybird │ 2 │ 0 │ 1 │
# ├──────────────┴──────────────────┴─────────────────┴──────────────────┤
# │ 11 rows 4 columns │
# └──────────────────────────────────────────────────────────────────────┘
# ```
#
# Here we can see that the LLM classified the results into three different categories
# that we could then aggregate in a subsequent sql model!
#
# ## Python dbt model
#
# The python dbt model in [`dbt_modal_inference_proj/models/product_reviews_sentiment.py`](https://github.com/modal-labs/modal-examples/blob/main/10_integrations/dbt_modal_inference/dbt_modal_inference_proj/models/product_reviews_sentiment.py) is quite simple.
#
# It defines a python dbt model that reads a record batch of product reviews,
# generates a prompt for each review and makes an inference call to a Modal Function
# that serves an LLM inference endpoint. It then stores the output in a new column
# and writes the data to a parquet file.
#
# And it's that simple to call a Modal web endpoint from dbt!
#
# ## View the stored output
#
# Since we're using a [Volume](https://modal.com/docs/guide/volumes) for storing our dbt target results
# and our DuckDB parquet files
# you can view the results and use them outside the Modal Function too.
#
# View the target directory by:
# ```sh
# modal volume ls dbt-inference-vol target/
# Directory listing of 'target/' in 'dbt-inference-vol'
# ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┓
# ┃ Filename ┃ Type ┃ Created/Modified ┃ Size ┃
# ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━┩
# │ target/run │ dir │ 2024-07-19 22:59 CEST │ 14 B │
# │ target/compiled │ dir │ 2024-07-19 22:59 CEST │ 14 B │
# │ target/semantic_manifest.json │ file │ 2024-07-19 23:25 CEST │ 234 B │
# │ target/run_results.json │ file │ 2024-07-19 23:25 CEST │ 10.1 KiB │
# │ target/manifest.json │ file │ 2024-07-19 23:25 CEST │ 419.7 KiB │
# │ target/partial_parse.msgpack │ file │ 2024-07-19 23:25 CEST │ 412.7 KiB │
# │ target/graph_summary.json │ file │ 2024-07-19 23:25 CEST │ 1.4 KiB │
# │ target/graph.gpickle │ file │ 2024-07-19 23:25 CEST │ 15.7 KiB │
# └───────────────────────────────┴──────┴───────────────────────┴───────────┘
# ```
#
# And the db directory:
# ```sh
# modal volume ls dbt-inference-vol db/
# Directory listing of 'db/' in 'dbt-inference-vol'
# ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┓
# ┃ Filename ┃ Type ┃ Created/Modified ┃ Size ┃
# ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━┩
# │ db/review_sentiments.parquet │ file │ 2024-07-19 23:25 CEST │ 9.6 KiB │
# │ db/product_reviews_sentiment_agg.parquet │ file │ 2024-07-19 23:25 CEST │ 756 B │
# └──────────────────────────────────────────┴──────┴───────────────────────┴─────────┘
# ```
#
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@

target/
dbt_packages/
logs/
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
name: "sentiment_shop"
version: "1.0.0"
config-version: 2

# This setting configures which "profile" dbt uses for this project.
profile: "modal"

# These configurations specify where dbt should look for different types of files.
# The `model-paths` config, for example, states that models in this project can be
# found in the "models/" directory. You probably won't need to change these!
model-paths: ["models"]
analysis-paths: ["analyses"]
test-paths: ["tests"]
seed-paths: ["seeds"]
macro-paths: ["macros"]
snapshot-paths: ["snapshots"]

target-path: "target" # directory which will store compiled SQL files
clean-targets: # directories to be removed by `dbt clean`
- "target"
- "dbt_packages"

# Configuring models
# Full documentation: https://docs.getdbt.com/docs/configuring-models
models:
+materialized: table

seeds:

Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
version: 2

models:
- name: product_reviews_sentiment
config:
materialized: external
location: "{{ env_var('DB_PATH') }}/product_reviews_sentiment.parquet"
inference_url: "{{ var('inference_url') }}"
- name: product_reviews_sentiment_agg
config:
materialized: external
location: "{{ env_var('DB_PATH') }}/product_reviews_sentiment_agg.parquet"
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
with products as (

select * from {{ ref('stg_products') }}

),

reviews as (

select * from {{ ref('stg_reviews') }}

),

product_reviews as (

select
p.id as product_id,
p.name as product_name,
p.description as product_description,
r.review as product_review
from products p
left join reviews r on p.id = r.product_id
)

select * from product_reviews
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
import json

import pyarrow as pa
import requests


def get_prompt(review):
"""
This function takes a review and returns a prompt for the review sentiment classification.
Args:
review: A product review.
Returns:
A prompt for the review sentiment classification.
"""
return (
"""
You are an expert at analyzing product reviews sentiment.
Your task is to classify the given product review into one of the following labels: ["positive", "negative", "neutral"]
Here are some examples:
1. "example": "Packed with innovative features and reliable performance, this product exceeds expectations, making it a worthwhile investment."
"label": "positive"
2. "example": "Despite promising features, the product's build quality and performance were disappointing, failing to meet expectations."
"label": "negative"
3. "example": "While the product offers some useful functionalities, its overall usability and durability may vary depending on individual needs and preferences."
"label": "neutral"
Label the following review:
"""
+ '"'
+ review
+ '"'
+ """
Respond in a single word with the label.
"""
)


def batcher(batch_reader: pa.RecordBatchReader, inference_url: str):
"""
This function takes a batch reader and an inference url and yields a record batch with the review sentiment.
Args:
batch_reader: A record batch reader.
inference_url: The url of the inference service.
Yields:
A record batch with the review sentiment.
"""
for batch in batch_reader:
df = batch.to_pandas()

prompts = (
df["product_review"]
.apply(lambda review: get_prompt(review))
.tolist()
)

res = (
requests.post( # request to the inference service running on Modal
inference_url,
json={"prompts": prompts},
)
)

df["review_sentiment"] = json.loads(res.content)

yield pa.RecordBatch.from_pandas(df)


def model(dbt, session):
"""
This function defines the model for the product reviews sentiment.
Args:
dbt: The dbt object.
session: The session object.
Returns:
A record batch reader with the review sentiment.
"""
dbt.config(
materialized="external",
location="/root/vol/db/review_sentiments.parquet",
)
inference_url = dbt.config.get("inference_url")

big_model = dbt.ref("product_reviews")
batch_reader = big_model.record_batch(100)
batch_iter = batcher(batch_reader, inference_url)
new_schema = batch_reader.schema.append(
pa.field("review_sentiment", pa.string())
)
return pa.RecordBatchReader.from_batches(new_schema, batch_iter)
Loading

0 comments on commit 958d8e8

Please sign in to comment.