Skip to content

Commit

Permalink
Change HUGGINGFACE_TOKEN to HF_TOKEN
Browse files Browse the repository at this point in the history
  • Loading branch information
ekzhang committed Jan 3, 2024
1 parent 8db92de commit 2bca493
Show file tree
Hide file tree
Showing 8 changed files with 19 additions and 19 deletions.
4 changes: 2 additions & 2 deletions 06_gpu_and_ml/diffusers/train_and_serve_diffusers_script.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@
# import huggingface_hub

# # login to huggingface
# hf_key = os.environ["HUGGINGFACE_TOKEN"]
# hf_key = os.environ["HF_TOKEN"]
# huggingface_hub.login(hf_key)

# dataset = load_dataset("imagefolder", data_dir="/lg_white_bg_heroicon_png_img", split="train")
Expand Down Expand Up @@ -285,7 +285,7 @@ def train():
write_basic_config(mixed_precision="fp16")

# authenticate to hugging face so we can download the model weights
hf_key = os.environ["HUGGINGFACE_TOKEN"]
hf_key = os.environ["HF_TOKEN"]
huggingface_hub.login(hf_key)

# check whether we can access the model repo
Expand Down
2 changes: 1 addition & 1 deletion 06_gpu_and_ml/embeddings/text_embeddings_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ def spawn_server() -> subprocess.Popen:
["text-embeddings-router"] + LAUNCH_FLAGS,
env={
**os.environ,
"HUGGING_FACE_HUB_TOKEN": os.environ["HUGGINGFACE_TOKEN"],
"HUGGING_FACE_HUB_TOKEN": os.environ["HF_TOKEN"],
},
)

Expand Down
6 changes: 3 additions & 3 deletions 06_gpu_and_ml/openai_whisper/finetuning/train/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -171,13 +171,13 @@ def __call__(
"mozilla-foundation/common_voice_11_0",
"hi",
split="train+validation",
use_auth_token=os.environ["HUGGINGFACE_TOKEN"],
use_auth_token=os.environ["HF_TOKEN"],
)
raw_datasets["eval"] = load_dataset(
"mozilla-foundation/common_voice_11_0",
"hi",
split="test",
use_auth_token=os.environ["HUGGINGFACE_TOKEN"],
use_auth_token=os.environ["HF_TOKEN"],
)

# Most ASR datasets only provide input audio samples (audio) and
Expand Down Expand Up @@ -211,7 +211,7 @@ def __call__(
else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=os.environ["HUGGINGFACE_TOKEN"],
use_auth_token=os.environ["HF_TOKEN"],
)

config.update(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ def download_and_compile():
MODEL_ID,
revision="fp16",
torch_dtype=torch.float16,
use_auth_token=os.environ["HUGGINGFACE_TOKEN"],
use_auth_token=os.environ["HF_TOKEN"],
).save_pretrained(MODEL_PATH, safe_serialization=True)

diffusers.EulerDiscreteScheduler.from_pretrained(
Expand Down
6 changes: 3 additions & 3 deletions 06_gpu_and_ml/text_generation_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ def download_model():
],
env={
**os.environ,
"HUGGING_FACE_HUB_TOKEN": os.environ["HUGGINGFACE_TOKEN"],
"HUGGING_FACE_HUB_TOKEN": os.environ["HF_TOKEN"],
},
check=True,
)
Expand All @@ -73,7 +73,7 @@ def download_model():
#
# Next we run the download step to pre-populate the image with our model weights.
#
# For this step to work on a gated model such as LLaMA 2, the HUGGINGFACE_TOKEN environment
# For this step to work on a gated model such as LLaMA 2, the HF_TOKEN environment
# variable must be set ([reference](https://github.com/huggingface/text-generation-inference#using-a-private-or-gated-model)).
#
# After [creating a HuggingFace access token](https://huggingface.co/settings/tokens),
Expand Down Expand Up @@ -130,7 +130,7 @@ def __enter__(self):
["text-generation-launcher"] + LAUNCH_FLAGS,
env={
**os.environ,
"HUGGING_FACE_HUB_TOKEN": os.environ["HUGGINGFACE_TOKEN"],
"HUGGING_FACE_HUB_TOKEN": os.environ["HF_TOKEN"],
},
)
self.client = AsyncClient("http://127.0.0.1:8000", timeout=60)
Expand Down
4 changes: 2 additions & 2 deletions 06_gpu_and_ml/vllm_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@
# ### Download the weights
# Make sure you have created a [HuggingFace access token](https://huggingface.co/settings/tokens).
# To access the token in a Modal function, we can create a secret on the [secrets page](https://modal.com/secrets).
# Now the token will be available via the environment variable named `HUGGINGFACE_TOKEN`. Functions that inject this secret will have access to the environment variable.
# Now the token will be available via the environment variable named `HF_TOKEN`. Functions that inject this secret will have access to the environment variable.
#
# We can download the model to a particular directory using the HuggingFace utility function `snapshot_download`.
#
Expand All @@ -49,7 +49,7 @@ def download_model_to_folder():
snapshot_download(
BASE_MODEL,
local_dir=MODEL_DIR,
token=os.environ["HUGGINGFACE_TOKEN"],
token=os.environ["HF_TOKEN"],
)
move_cache()

Expand Down
10 changes: 5 additions & 5 deletions 10_integrations/pyjulia.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,13 +3,13 @@
stub = modal.Stub("example-pyjulia")
stub.image = (
modal.Image.debian_slim()
# Install Julia 1.7
# Install Julia 1.10
.apt_install("wget", "ca-certificates")
.run_commands(
"wget -nv https://julialang-s3.julialang.org/bin/linux/x64/1.7/julia-1.7.2-linux-x86_64.tar.gz",
"tar -xf julia-1.7.2-linux-x86_64.tar.gz",
"cp -r julia-1.7.2 /opt/",
"ln -s /opt/julia-1.7.2/bin/julia /usr/local/bin/julia",
"wget -nv https://julialang-s3.julialang.org/bin/linux/x64/1.10/julia-1.10.0-linux-x86_64.tar.gz",
"tar -xf julia-1.10.0-linux-x86_64.tar.gz",
"cp -r julia-1.10.0 /opt/",
"ln -s /opt/julia-1.10.0/bin/julia /usr/local/bin/julia",
)
# Install PyJulia bindings
.pip_install("julia")
Expand Down
4 changes: 2 additions & 2 deletions 10_integrations/stable_diffusion_slackbot.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@
# Next, [create a HuggingFace access token](https://huggingface.co/settings/tokens).
# To access the token in a Modal function, we can create a secret on the
# [secrets page](https://modal.com/secrets). Let's use the environment variable
# named `HUGGINGFACE_TOKEN`. Functions that inject this secret will have access
# named `HF_TOKEN`. Functions that inject this secret will have access
# to the environment variable.
#
# ![create a huggingface token](./huggingface_token.png)
Expand All @@ -57,7 +57,7 @@ def fetch_model(local_files_only: bool = False):

return StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
use_auth_token=os.environ["HUGGINGFACE_TOKEN"],
use_auth_token=os.environ["HF_TOKEN"],
variant="fp16",
torch_dtype=float16,
device_map="auto",
Expand Down

0 comments on commit 2bca493

Please sign in to comment.