-
Notifications
You must be signed in to change notification settings - Fork 120
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
127 additions
and
163 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,169 +1,133 @@ | ||
#include <ensmallen.hpp> | ||
#include "catch.hpp" | ||
#include "test_function_tools.hpp" | ||
#include <ensmallen_bits/cmaes/pop_cmaes.hpp> | ||
|
||
using namespace ens; | ||
using namespace ens::test; | ||
|
||
/** | ||
* @file ipop_cmaes_impl.hpp | ||
* @author Marcus Edel | ||
* @author Benjami Parellada | ||
* | ||
* Implementation of the IPOP Covariance Matrix Adaptation Evolution Strategy | ||
* as proposed by A. Auger and N. Hansen in "A Restart CMA Evolution | ||
* Strategy With Increasing Population Size" and BIPOP Covariance Matrix | ||
* Adaptation Evolution Strategy as proposed by N. Hansen in "Benchmarking | ||
* a BI-population CMA-ES on the BBOB-2009 function testbed". | ||
* | ||
* ensmallen is free software; you may redistribute it and/or modify it under | ||
* the terms of the 3-clause BSD license. You should have received a copy of | ||
* the 3-clause BSD license along with ensmallen. If not, see | ||
* http://www.opensource.org/licenses/BSD-3-Clause for more information. | ||
* Run IPOP-CMA-ES on the Rastrigin function and check whether the optimizer | ||
* converges to the expected solution within tolerance limits. | ||
*/ | ||
#ifndef ENSMALLEN_CMAES_POP_CMAES_IMPL_HPP | ||
#define ENSMALLEN_CMAES_POP_CMAES_IMPL_HPP | ||
|
||
#include "pop_cmaes.hpp" | ||
#include <ensmallen_bits/function.hpp> | ||
#include <random> | ||
|
||
namespace ens { | ||
|
||
template<typename SelectionPolicyType, typename TransformationPolicyType, bool UseBIPOPFlag> | ||
POP_CMAES<SelectionPolicyType, | ||
TransformationPolicyType, | ||
UseBIPOPFlag>::POP_CMAES( | ||
const size_t lambda, | ||
const TransformationPolicyType& transformationPolicy, | ||
const size_t batchSize, | ||
const size_t maxIterations, | ||
const double tolerance, | ||
const SelectionPolicyType& selectionPolicy, | ||
double stepSize, | ||
const double populationFactor, | ||
const size_t maxRestarts, | ||
const size_t maxFunctionEvaluations) : | ||
CMAES<SelectionPolicyType, TransformationPolicyType>( | ||
lambda, transformationPolicy, batchSize, maxIterations, | ||
tolerance, selectionPolicy, stepSize), | ||
populationFactor(populationFactor), | ||
maxRestarts(maxRestarts), | ||
maxFunctionEvaluations(maxFunctionEvaluations) | ||
{ /* Nothing to do. */ } | ||
|
||
template<typename SelectionPolicyType, | ||
typename TransformationPolicyType, | ||
bool UseBIPOPFlag> | ||
template<typename SeparableFunctionType, typename MatType, typename... CallbackTypes> | ||
typename MatType::elem_type POP_CMAES<SelectionPolicyType, | ||
TransformationPolicyType, UseBIPOPFlag>::Optimize( | ||
SeparableFunctionType& function, | ||
MatType& iterateIn, | ||
CallbackTypes&&... callbacks) | ||
TEST_CASE("IPOPCMAESRastriginFunctionTest", "[POPCMAESTest]") | ||
{ | ||
// Convenience typedefs. | ||
typedef typename MatType::elem_type ElemType; | ||
|
||
StoreBestCoordinates<MatType> sbc; | ||
StoreBestCoordinates<MatType> overallSBC; | ||
size_t totalFunctionEvaluations = 0; | ||
size_t largePopulationBudget = 0; | ||
size_t smallPopulationBudget = 0; | ||
|
||
std::random_device rd; | ||
std::mt19937 gen(rd()); | ||
std::uniform_real_distribution<> dis(0.0, 1.0); | ||
|
||
// First single run with default population size | ||
MatType iterate = iterateIn; | ||
ElemType overallObjective = CMAES<SelectionPolicyType, | ||
TransformationPolicyType>::Optimize(function, iterate, sbc, | ||
callbacks...); | ||
|
||
overallSBC = sbc; | ||
ElemType objective; | ||
size_t evaluations; | ||
|
||
size_t defaultLambda = this->PopulationSize(); | ||
size_t currentLargeLambda = defaultLambda; | ||
|
||
double stepSizeDefault = this->StepSize(); | ||
|
||
Info << "POP-CMA-ES: default population size (lambda): " << defaultLambda | ||
<< ", default step size (sigma): " << stepSizeDefault << std::endl; | ||
|
||
size_t restart = 0; | ||
|
||
while (restart < maxRestarts) | ||
{ | ||
if (!UseBIPOPFlag || largePopulationBudget <= smallPopulationBudget || | ||
restart == 0 || restart == maxRestarts - 1) | ||
{ | ||
// Large population regime (IPOP or BIPOP) | ||
currentLargeLambda *= populationFactor; | ||
this->PopulationSize() = currentLargeLambda; | ||
this->StepSize() = stepSizeDefault; | ||
|
||
Info << "POP-CMA-ES: restart " << restart << ", large population size" << | ||
" (lambda): " << this->PopulationSize() << std::endl; | ||
|
||
iterate = iterateIn; | ||
|
||
// Optimize using the CMAES object. | ||
objective = CMAES<SelectionPolicyType, | ||
TransformationPolicyType>::Optimize(function, iterate, sbc, | ||
callbacks...); | ||
|
||
evaluations = this->FunctionEvaluations(); | ||
largePopulationBudget += evaluations; | ||
} | ||
else if (UseBIPOPFlag) | ||
{ | ||
// Small population regime (BIPOP only) | ||
double u = dis(gen); | ||
size_t smallLambda = static_cast<size_t>(defaultLambda * std::pow(0.5 * | ||
currentLargeLambda / defaultLambda, u * u)); | ||
double stepSizeSmall = 2 * std::pow(10, -2*dis(gen)); | ||
|
||
this->PopulationSize() = smallLambda; | ||
this->StepSize() = stepSizeSmall; | ||
|
||
Info << "POP-CMA-ES: restart " << restart << ", small population size" | ||
<< " (lambda): " << this->PopulationSize() << ", small step size" | ||
<< " (sigma): " << this->StepSize() << std::endl; | ||
|
||
iterate = iterateIn; | ||
|
||
// Optimize using the CMAES object. | ||
objective = CMAES<SelectionPolicyType, | ||
TransformationPolicyType>::Optimize(function, iterate, sbc, | ||
callbacks...); | ||
|
||
evaluations = this->FunctionEvaluations(); | ||
smallPopulationBudget += evaluations; | ||
} | ||
|
||
if (objective < overallObjective) | ||
{ | ||
overallObjective = objective; | ||
overallSBC = sbc; | ||
Info << "POP-CMA-ES: New best objective: " << overallObjective << | ||
std::endl; | ||
} | ||
|
||
totalFunctionEvaluations += evaluations; | ||
// Check if the total number of evaluations has exceeded the limit | ||
if (totalFunctionEvaluations >= maxFunctionEvaluations) { | ||
Warn << "POP-CMA-ES: Maximum function overall evaluations reached. " | ||
<< "terminating optimization." << std::endl; | ||
|
||
Callback::EndOptimization(*this, function, iterate, callbacks...); | ||
iterateIn = overallSBC.BestCoordinates(); | ||
return overallSBC.BestObjective(); | ||
} | ||
|
||
++restart; | ||
} | ||
|
||
Callback::EndOptimization(*this, function, iterate, callbacks...); | ||
iterateIn = overallSBC.BestCoordinates(); | ||
return overallSBC.BestObjective(); | ||
RastriginFunction f(2); | ||
BoundaryBoxConstraint<> b(-10, 10); | ||
|
||
IPOP_CMAES<FullSelection, BoundaryBoxConstraint<>> ipopcmaes( | ||
15, // lambda | ||
b, // transformationPolicy | ||
32, // batchSize | ||
1000, // maxIterations | ||
1e-8, // tolerance | ||
FullSelection(), // selectionPolicy | ||
3.72, // stepSize | ||
2.0, // populationFactor | ||
5, // maxRestarts | ||
1e4 // maxFunctionEvaluations | ||
); | ||
|
||
arma::mat initialPoint = f.GetInitialPoint(); | ||
arma::mat expectedResult = f.GetFinalPoint(); | ||
|
||
MultipleTrialOptimizerTest(f, ipopcmaes, initialPoint, expectedResult, 0.01, f.GetFinalObjective(), 0.1, 5); | ||
} | ||
|
||
} // namespace ens | ||
/** | ||
* Run BIPOP-CMA-ES on the Rastrigin function and check whether the optimizer | ||
* converges to the expected solution within tolerance limits. | ||
*/ | ||
TEST_CASE("BIPOPCMAESRastriginFunctionTest", "[POPCMAESTest]") | ||
{ | ||
RastriginFunction f(2); | ||
BoundaryBoxConstraint<> b(-10, 10); | ||
|
||
IPOP_CMAES<FullSelection, BoundaryBoxConstraint<>> ipopcmaes( | ||
15, // lambda | ||
b, // transformationPolicy | ||
32, // batchSize | ||
1000, // maxIterations | ||
1e-8, // tolerance | ||
FullSelection(), // selectionPolicy | ||
3.72, // stepSize | ||
2.0, // populationFactor | ||
5, // maxRestarts | ||
1e4 // maxFunctionEvaluations | ||
); | ||
|
||
arma::mat initialPoint = f.GetInitialPoint(); | ||
arma::mat expectedResult = f.GetFinalPoint(); | ||
|
||
MultipleTrialOptimizerTest(f, ipopcmaes, initialPoint, expectedResult, 0.01, f.GetFinalObjective(), 0.1, 5); | ||
} | ||
|
||
#endif | ||
/** | ||
* Run IPOP-CMA-ES on the Rosenbrock function and check whether the optimizer | ||
* converges to the expected solution within tolerance limits. | ||
*/ | ||
TEST_CASE("IPOPCMAESRosenbrockFunctionTest", "[POPCMAESTest]") | ||
{ | ||
BoundaryBoxConstraint<> b(0, 2); | ||
|
||
BIPOP_CMAES<FullSelection, BoundaryBoxConstraint<>> bipopcmaes( | ||
15, // lambda | ||
b, // transformationPolicy | ||
32, // batchSize | ||
1000, // maxIterations | ||
1e-8, // tolerance | ||
FullSelection(), // selectionPolicy | ||
0.25, // stepSize | ||
1.5, // populationFactor | ||
5, // maxRestarts | ||
1e4 // maxFunctionEvaluations | ||
); | ||
|
||
FunctionTest<RosenbrockFunction>(bipopcmaes, 0.1, 0.1); | ||
} | ||
|
||
/** | ||
* Run BIPOP-CMA-ES on the Rosenbrock function and check whether the optimizer | ||
* converges to the expected solution within tolerance limits. | ||
*/ | ||
TEST_CASE("BIPOPCMAESRosenbrockFunctionTest", "[POPCMAESTest]") | ||
{ | ||
BoundaryBoxConstraint<> b(0, 2); | ||
|
||
BIPOP_CMAES<FullSelection, BoundaryBoxConstraint<>> bipopcmaes( | ||
15, // lambda | ||
b, // transformationPolicy | ||
32, // batchSize | ||
1000, // maxIterations | ||
1e-8, // tolerance | ||
FullSelection(), // selectionPolicy | ||
0.25, // stepSize | ||
1.5, // populationFactor | ||
5, // maxRestarts | ||
1e4 // maxFunctionEvaluations | ||
); | ||
|
||
FunctionTest<RosenbrockFunction>(bipopcmaes, 0.1, 0.1); | ||
} | ||
|
||
/** | ||
* Run IPOP-CMA-ES with the full selection policy on logistic regression and | ||
* make sure the results are acceptable. | ||
*/ | ||
TEST_CASE("IPOPCMAESLogisticRegressionTest", "[POPCMAESTest]") | ||
{ | ||
BoundaryBoxConstraint<> b(-10, 10); | ||
IPOP_CMAES<FullSelection, BoundaryBoxConstraint<>> cmaes(0, b, 32, 500, 1e-3, FullSelection(), 0.6, 2.0, 5, 1e7); | ||
LogisticRegressionFunctionTest(cmaes, 0.003, 0.006, 5); | ||
} | ||
|
||
/** | ||
* Run BIPOP-CMA-ES with the random selection policy on logistic regression and | ||
* make sure the results are acceptable. | ||
*/ | ||
TEST_CASE("BIPOPCMAESLogisticRegressionTest", "[POPCMAESTest]") | ||
{ | ||
BoundaryBoxConstraint<> b(-10, 10); | ||
BIPOP_CMAES<FullSelection, BoundaryBoxConstraint<>> cmaes(0, b, 32, 500, 1e-3, FullSelection(), 0.6, 2.0, 5, 1e7); | ||
LogisticRegressionFunctionTest(cmaes, 0.003, 0.006, 5); | ||
} |