-
Notifications
You must be signed in to change notification settings - Fork 50
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add test for state/forcing values from time-slicing
- Loading branch information
Showing
1 changed file
with
139 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
# Third-party | ||
import numpy as np | ||
import pytest | ||
import xarray as xr | ||
|
||
# First-party | ||
from neural_lam.datastore.base import BaseDatastore | ||
from neural_lam.weather_dataset import WeatherDataset | ||
|
||
|
||
class SinglePointDummyDatastore(BaseDatastore): | ||
step_length = 1 | ||
config = None | ||
coords_projection = None | ||
num_grid_points = 1 | ||
root_path = None | ||
|
||
def __init__(self, time_values, state_data, forcing_data, is_forecast): | ||
self._time_values = np.array(time_values) | ||
self._state_data = np.array(state_data) | ||
self._forcing_data = np.array(forcing_data) | ||
self.is_forecast = is_forecast | ||
|
||
if is_forecast: | ||
assert self._state_data.ndim == 2 | ||
else: | ||
assert self._state_data.ndim == 1 | ||
|
||
def get_num_data_vars(self, category): | ||
return 1 | ||
|
||
def get_dataarray(self, category, split): | ||
if category == "state": | ||
values = self._state_data | ||
elif category == "forcing": | ||
values = self._forcing_data | ||
else: | ||
raise NotImplementedError(category) | ||
|
||
if self.is_forecast: | ||
raise NotImplementedError() | ||
else: | ||
da = xr.DataArray( | ||
values, dims=["time"], coords={"time": self._time_values} | ||
) | ||
# add `{category}_feature` and `grid_index` dimensions | ||
|
||
da = da.expand_dims("grid_index") | ||
da = da.expand_dims(f"{category}_feature") | ||
|
||
return da | ||
|
||
def get_standardization_dataarray(self, category): | ||
raise NotImplementedError() | ||
|
||
def get_xy(self, category): | ||
raise NotImplementedError() | ||
|
||
def get_vars_units(self, category): | ||
raise NotImplementedError() | ||
|
||
def get_vars_names(self, category): | ||
raise NotImplementedError() | ||
|
||
def get_vars_long_names(self, category): | ||
raise NotImplementedError() | ||
|
||
|
||
ANALYSIS_STATE_VALUES = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] | ||
FORCING_VALUES = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19] | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"ar_steps,num_past_forcing_steps,num_future_forcing_steps", | ||
[[3, 0, 0], [3, 1, 0], [3, 2, 0], [3, 3, 0]], | ||
) | ||
def test_time_slicing_analysis( | ||
ar_steps, num_past_forcing_steps, num_future_forcing_steps | ||
): | ||
# state and forcing variables have only on dimension, `time` | ||
time_values = np.datetime64("2020-01-01") + np.arange( | ||
len(ANALYSIS_STATE_VALUES) | ||
) | ||
assert len(ANALYSIS_STATE_VALUES) == len(FORCING_VALUES) == len(time_values) | ||
|
||
datastore = SinglePointDummyDatastore( | ||
state_data=ANALYSIS_STATE_VALUES, | ||
forcing_data=FORCING_VALUES, | ||
time_values=time_values, | ||
is_forecast=False, | ||
) | ||
|
||
dataset = WeatherDataset( | ||
datastore=datastore, | ||
ar_steps=ar_steps, | ||
num_future_forcing_steps=num_past_forcing_steps, | ||
num_past_forcing_steps=num_future_forcing_steps, | ||
standardize=False, | ||
) | ||
|
||
sample = dataset[0] | ||
|
||
init_states, target_states, forcing, _ = [ | ||
tensor.numpy() for tensor in sample | ||
] | ||
|
||
expected_init_states = [0, 1] | ||
if ar_steps == 3: | ||
expected_target_states = [2, 3, 4] | ||
else: | ||
raise NotImplementedError() | ||
|
||
if num_past_forcing_steps == num_future_forcing_steps == 0: | ||
expected_forcing_values = [[12], [13], [14]] | ||
elif num_past_forcing_steps == 1 and num_future_forcing_steps == 0: | ||
expected_forcing_values = [[11, 12], [12, 13], [13, 14]] | ||
elif num_past_forcing_steps == 2 and num_future_forcing_steps == 0: | ||
expected_forcing_values = [[10, 11, 12], [11, 12, 13], [12, 13, 14]] | ||
elif num_past_forcing_steps == 3 and num_future_forcing_steps == 0: | ||
raise Exception("No idea what this should be ...") | ||
else: | ||
raise NotImplementedError() | ||
|
||
# init_states: (2, N_grid, d_features) | ||
# target_states: (ar_steps, N_grid, d_features) | ||
# forcing: (ar_steps, N_grid, d_windowed_forcing) | ||
# target_times: (ar_steps,) | ||
assert init_states.shape == (2, 1, 1) | ||
assert init_states[:, 0, 0].tolist() == expected_init_states | ||
|
||
assert target_states.shape == (3, 1, 1) | ||
assert target_states[:, 0, 0].tolist() == expected_target_states | ||
|
||
assert forcing.shape == ( | ||
3, | ||
1, | ||
1 + num_past_forcing_steps + num_future_forcing_steps, | ||
) | ||
np.testing.assert_equal(forcing[:, 0, :], np.array(expected_forcing_values)) |