-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
218047c
commit e740207
Showing
1 changed file
with
156 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
# Copyright © 2024 Apple Inc. | ||
|
||
from functools import lru_cache | ||
from typing import Optional | ||
|
||
import mlx.core as mx | ||
from mlx.nn.layers.base import Module | ||
|
||
|
||
@lru_cache | ||
def sum_gradients(group): | ||
if group.size() == 1: | ||
return lambda x: x | ||
|
||
@mx.custom_function | ||
def f(x): | ||
return x | ||
|
||
@f.vjp | ||
def f(x, dx, _): | ||
return mx.distributed.all_sum(dx, group=group) | ||
|
||
return f | ||
|
||
|
||
class AllToShardedLinear(Module): | ||
"""Each member of the group applies part of the affine transformation such | ||
that the result is sharded across the group. | ||
The gradients are automatically aggregated from each member of the group. | ||
Args: | ||
input_dims (int): The dimensionality of the input features | ||
output_dims (int): The dimensionality of the output features | ||
bias (bool, optional): If set to ``False`` the the layer will not use a | ||
bias. Default is ``True``. | ||
group (mx.distributed.Group, optional): The sharding will happen across | ||
this group. If not set then the global group is used. Default is | ||
``None``. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
input_dims: int, | ||
output_dims: int, | ||
bias: bool = True, | ||
group: Optional[mx.distributed.Group] = None, | ||
): | ||
super().__init__() | ||
|
||
# Initialize the parameters | ||
scale = math.sqrt(1.0 / input_dims) | ||
self.group = group or mx.distributed.init() | ||
N = self.group.size() | ||
|
||
if (output_dims % N) != 0: | ||
raise ValueError( | ||
f"Cannot shard the output of size {output_dims} across {N} devices." | ||
) | ||
|
||
self.weight = mx.random.uniform( | ||
low=-scale, | ||
high=scale, | ||
shape=(output_dims // N, input_dims), | ||
) | ||
if bias: | ||
self.bias = mx.random.uniform( | ||
low=-scale, | ||
high=scale, | ||
shape=(output_dims // N,), | ||
) | ||
|
||
def _extra_repr(self) -> str: | ||
N = self.group.size() | ||
return f"input_dims={self.weight.shape[1]}, output_dims={N * self.weight.shape[0]}, bias={'bias' in self}" | ||
|
||
def __call__(self, x: mx.array) -> mx.array: | ||
# Aggregate the gradients coming from each shard | ||
if self.group.size() > 1: | ||
x = sum_gradients(self.group)(x) | ||
|
||
# Compute the affine projection | ||
if "bias" in self: | ||
x = mx.addmm(self["bias"], x, self["weight"].T) | ||
else: | ||
x = x @ self["weight"].T | ||
return x | ||
|
||
|
||
class ShardedToAllLinear(Module): | ||
"""Each member of the group applies part of the affine transformation and | ||
then aggregates the results. | ||
All nodes will have the same exact result after this layer. | ||
Args: | ||
input_dims (int): The dimensionality of the input features | ||
output_dims (int): The dimensionality of the output features | ||
bias (bool, optional): If set to ``False`` the the layer will not use a | ||
bias. Default is ``True``. | ||
group (mx.distributed.Group, optional): The sharding will happen across | ||
this group. If not set then the global group is used. Default is | ||
``None``. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
input_dims: int, | ||
output_dims: int, | ||
bias: bool = True, | ||
group: Optional[mx.distributed.Group] = None, | ||
): | ||
super().__init__() | ||
|
||
# Initialize the parameters | ||
scale = math.sqrt(1.0 / input_dims) | ||
self.group = group or mx.distributed.init() | ||
N = self.group.size() | ||
|
||
if (input_dims % N) != 0: | ||
raise ValueError( | ||
f"The input of size {input_dims} cannot be sharded across {N} devices." | ||
) | ||
|
||
self.weight = mx.random.uniform( | ||
low=-scale, | ||
high=scale, | ||
shape=(output_dims, input_dims // N), | ||
) | ||
if bias: | ||
self.bias = mx.random.uniform( | ||
low=-scale, | ||
high=scale, | ||
shape=(output_dims,), | ||
) | ||
|
||
def _extra_repr(self) -> str: | ||
N = self.group.size() | ||
return f"input_dims={N * self.weight.shape[1]}, output_dims={self.weight.shape[0]}, bias={'bias' in self}" | ||
|
||
def __call__(self, x: mx.array) -> mx.array: | ||
if self.group.size() > 1: | ||
# Perform the local projection and aggregate the results | ||
x = x @ self["weight"].T | ||
x = mx.distributed.all_sum(x, group=group) | ||
|
||
# Add the bias if we have one | ||
if "bias" in self: | ||
x = x + self["bias"] | ||
else: | ||
# Normal linear layer as we are not in a distributed setting. | ||
if "bias" in self: | ||
x = mx.addmm(self["bias"], x, self["weight"].T) | ||
else: | ||
x = x @ self["weight"].T | ||
return x |