forked from LynnHo/CycleGAN-Tensorflow-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
183 lines (150 loc) · 7.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import ops
import data
import utils
import models
import argparse
import numpy as np
import tensorflow as tf
import image_utils as im
from glob import glob
""" param """
parser = argparse.ArgumentParser(description='')
parser.add_argument('--dataset', dest='dataset', default='horse2zebra', help='which dataset to use')
parser.add_argument('--load_size', dest='load_size', type=int, default=286, help='scale images to this size')
parser.add_argument('--crop_size', dest='crop_size', type=int, default=256, help='then crop to this size')
parser.add_argument('--epoch', dest='epoch', type=int, default=200, help='# of epoch')
parser.add_argument('--batch_size', dest='batch_size', type=int, default=1, help='# images in a batch')
parser.add_argument('--lr', dest='lr', type=float, default=0.0002, help='initial learning rate for adam')
parser.add_argument('--gpu_id', dest='gpu_id', type=int, default=0, help='GPU ID')
args = parser.parse_args()
dataset = args.dataset
load_size = args.load_size
crop_size = args.crop_size
epoch = args.epoch
batch_size = args.batch_size
lr = args.lr
gpu_id = args.gpu_id
""" graphs """
with tf.device('/gpu:%d' % gpu_id):
''' graph '''
# nodes
a_real = tf.placeholder(tf.float32, shape=[None, crop_size, crop_size, 3])
b_real = tf.placeholder(tf.float32, shape=[None, crop_size, crop_size, 3])
a2b_sample = tf.placeholder(tf.float32, shape=[None, crop_size, crop_size, 3])
b2a_sample = tf.placeholder(tf.float32, shape=[None, crop_size, crop_size, 3])
a2b = models.generator(a_real, 'a2b')
b2a = models.generator(b_real, 'b2a')
b2a2b = models.generator(b2a, 'a2b', reuse=True)
a2b2a = models.generator(a2b, 'b2a', reuse=True)
a_dis = models.discriminator(a_real, 'a')
b2a_dis = models.discriminator(b2a, 'a', reuse=True)
b2a_sample_dis = models.discriminator(b2a_sample, 'a', reuse=True)
b_dis = models.discriminator(b_real, 'b')
a2b_dis = models.discriminator(a2b, 'b', reuse=True)
a2b_sample_dis = models.discriminator(a2b_sample, 'b', reuse=True)
# losses
g_loss_a2b = tf.identity(ops.l2_loss(a2b_dis, tf.ones_like(a2b_dis)), name='g_loss_a2b')
g_loss_b2a = tf.identity(ops.l2_loss(b2a_dis, tf.ones_like(b2a_dis)), name='g_loss_b2a')
cyc_loss_a = tf.identity(ops.l1_loss(a_real, a2b2a) * 10.0, name='cyc_loss_a')
cyc_loss_b = tf.identity(ops.l1_loss(b_real, b2a2b) * 10.0, name='cyc_loss_b')
g_loss = g_loss_a2b + g_loss_b2a + cyc_loss_a + cyc_loss_b
d_loss_a_real = ops.l2_loss(a_dis, tf.ones_like(a_dis))
d_loss_b2a_sample = ops.l2_loss(b2a_sample_dis, tf.zeros_like(b2a_sample_dis))
d_loss_a = tf.identity((d_loss_a_real + d_loss_b2a_sample) / 2.0, name='d_loss_a')
d_loss_b_real = ops.l2_loss(b_dis, tf.ones_like(b_dis))
d_loss_a2b_sample = ops.l2_loss(a2b_sample_dis, tf.zeros_like(a2b_sample_dis))
d_loss_b = tf.identity((d_loss_b_real + d_loss_a2b_sample) / 2.0, name='d_loss_b')
# summaries
g_summary = ops.summary_tensors([g_loss_a2b, g_loss_b2a, cyc_loss_a, cyc_loss_b])
d_summary_a = ops.summary(d_loss_a)
d_summary_b = ops.summary(d_loss_b)
''' optim '''
t_var = tf.trainable_variables()
d_a_var = [var for var in t_var if 'a_discriminator' in var.name]
d_b_var = [var for var in t_var if 'b_discriminator' in var.name]
g_var = [var for var in t_var if 'a2b_generator' in var.name or 'b2a_generator' in var.name]
d_a_train_op = tf.train.AdamOptimizer(lr, beta1=0.5).minimize(d_loss_a, var_list=d_a_var)
d_b_train_op = tf.train.AdamOptimizer(lr, beta1=0.5).minimize(d_loss_b, var_list=d_b_var)
g_train_op = tf.train.AdamOptimizer(lr, beta1=0.5).minimize(g_loss, var_list=g_var)
""" train """
''' init '''
# session
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
# counter
it_cnt, update_cnt = ops.counter()
'''data'''
a_img_paths = glob('./datasets/' + dataset + '/trainA/*.jpg')
b_img_paths = glob('./datasets/' + dataset + '/trainB/*.jpg')
a_data_pool = data.ImageData(sess, a_img_paths, batch_size, load_size=load_size, crop_size=crop_size)
b_data_pool = data.ImageData(sess, b_img_paths, batch_size, load_size=load_size, crop_size=crop_size)
a_test_img_paths = glob('./datasets/' + dataset + '/testA/*.jpg')
b_test_img_paths = glob('./datasets/' + dataset + '/testB/*.jpg')
a_test_pool = data.ImageData(sess, a_test_img_paths, batch_size, load_size=load_size, crop_size=crop_size)
b_test_pool = data.ImageData(sess, b_test_img_paths, batch_size, load_size=load_size, crop_size=crop_size)
a2b_pool = utils.ItemPool()
b2a_pool = utils.ItemPool()
'''summary'''
summary_writer = tf.summary.FileWriter('./summaries/' + dataset, sess.graph)
'''saver'''
ckpt_dir = './checkpoints/' + dataset
utils.mkdir(ckpt_dir + '/')
saver = tf.train.Saver(max_to_keep=5)
ckpt_path = utils.load_checkpoint(ckpt_dir, sess, saver)
if ckpt_path is None:
sess.run(tf.global_variables_initializer())
else:
print('Copy variables from % s' % ckpt_path)
'''train'''
try:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
batch_epoch = min(len(a_data_pool), len(b_data_pool)) // batch_size
max_it = epoch * batch_epoch
for it in range(sess.run(it_cnt), max_it):
sess.run(update_cnt)
# prepare data
a_real_ipt = a_data_pool.batch()
b_real_ipt = b_data_pool.batch()
a2b_opt, b2a_opt = sess.run([a2b, b2a], feed_dict={a_real: a_real_ipt, b_real: b_real_ipt})
a2b_sample_ipt = np.array(a2b_pool(list(a2b_opt)))
b2a_sample_ipt = np.array(b2a_pool(list(b2a_opt)))
# train G
g_summary_opt, _ = sess.run([g_summary, g_train_op], feed_dict={a_real: a_real_ipt, b_real: b_real_ipt})
summary_writer.add_summary(g_summary_opt, it)
# train D_b
d_summary_b_opt, _ = sess.run([d_summary_b, d_b_train_op], feed_dict={b_real: b_real_ipt, a2b_sample: a2b_sample_ipt})
summary_writer.add_summary(d_summary_b_opt, it)
# train D_a
d_summary_a_opt, _ = sess.run([d_summary_a, d_a_train_op], feed_dict={a_real: a_real_ipt, b2a_sample: b2a_sample_ipt})
summary_writer.add_summary(d_summary_a_opt, it)
# which epoch
epoch = it // batch_epoch
it_epoch = it % batch_epoch + 1
# display
if it % 1 == 0:
print("Epoch: (%3d) (%5d/%5d)" % (epoch, it_epoch, batch_epoch))
# save
if (it + 1) % 1000 == 0:
save_path = saver.save(sess, '%s/Epoch_(%d)_(%dof%d).ckpt' % (ckpt_dir, epoch, it_epoch, batch_epoch))
print('Model saved in file: % s' % save_path)
# sample
if (it + 1) % 100 == 0:
a_real_ipt = a_test_pool.batch()
b_real_ipt = b_test_pool.batch()
[a2b_opt, a2b2a_opt, b2a_opt, b2a2b_opt] = sess.run([a2b, a2b2a, b2a, b2a2b], feed_dict={a_real: a_real_ipt, b_real: b_real_ipt})
sample_opt = np.concatenate((a_real_ipt, a2b_opt, a2b2a_opt, b_real_ipt, b2a_opt, b2a2b_opt), axis=0)
save_dir = './sample_images_while_training/' + dataset
utils.mkdir(save_dir + '/')
im.imwrite(im.immerge(sample_opt, 2, 3), '%s/Epoch_(%d)_(%dof%d).jpg' % (save_dir, epoch, it_epoch, batch_epoch))
except Exception, e:
coord.request_stop(e)
finally:
print("Stop threads and close session!")
coord.request_stop()
coord.join(threads)
sess.close()