Skip to content

minghuaxu/HiTE

 
 

Repository files navigation

HiTE: a fast and accurate dynamic boundary adjustment approach for full-length Transposable Elements detection and annotation in Genome Assemblies

HiTE

GitHub GitHub DockerHub DockerHub Conda Nextflow

HiTE is a Python software that uses a dynamic boundary adjustment approach to detect and annotate full-length Transposable Elements in Genome Assemblies.

Application

HiTE has been successfully applied to multiple practical applications, and you can refer to our most recent case for reference.

TE annotation in einkorn assemblies using HiTE

Table of Contents

Installation

Recommended Hardware requirements: 40 CPU processors, 128 GB RAM.

Recommended OS: (Ubuntu 16.04, CentOS 7, etc.)

Dowload project

git clone https://github.com/CSU-KangHu/HiTE.git

Option 1. Run with Singularity (recommended)

# pull singularity image (once for all). There will be a HiTE.sif file.
singularity pull HiTE.sif docker://kanghu/hite:2.0.4

# run HiTE
singularity run -B ${host_path}:${container_path} --pwd /HiTE ${pathTo/HiTE.sif} python main.py \
 --genome ${genome} \
 --thread ${thread} \
 --outdir ${output_dir} \
 [other parameters]
 
 # (1) The options "--genome" and "--outdir" need to be specified as absolute paths.
 # (2) The option "-B" is used to specify directories to be mounted.
 #     It is recommended to set ${host_path} and ${container_path} to your user directory, and ensure 
 #     that all input and output files are located within the user directory.
 # (3) "--pwd /HiTE" and "python main.py" do not need to be changed.
 
 # e.g., my command: singularity run -B /home/hukang:/home/hukang --pwd /HiTE /home/hukang/HiTE.sif python main.py 
 # --genome /home/hukang/HiTE/demo/genome.fa 
 # --thread 40 
 # --outdir /home/hukang/HiTE/demo/test/
 

Option 2. Run with Docker

# pull docker image (once for all).
docker pull kanghu/hite:2.0.4

# run HiTE
docker run -v ${host_path}:${container_path} kanghu/hite:2.0.4 python main.py \
 --genome ${genome} \
 --thread ${thread} \
 --outdir ${output_dir} \
 [other parameters]
 
 # (1) The options "--genome" and "--outdir" need to be specified as absolute paths.
 # (2) The option "-v" is used to specify directories to be mounted.
 #     It is recommended to set ${host_path} and ${container_path} to your user directory, and ensure 
 #     that all input and output files are located within the user directory.
 
 # e.g., my command: docker run -v /home/hukang:/home/hukang kanghu/hite:2.0.4 python main.py 
 # --genome /home/hukang/HiTE/demo/genome.fa 
 # --thread 40 
 # --outdir /home/hukang/HiTE/demo/test/

Option 3. Run with conda

# Find the **yml** file in the project directory and run
cd HiTE
chmod +x tools/*
conda env create --name HiTE -f environment.yml
conda activate HiTE

Updating the Dfam library in RepeatMasker (optional)

  • HiTE is ready to go!
  • use --classified 0 if you do not need classified TE models.
  • If you require the TE library to be comprehensively classified, you need to configure RepeatMasker with the complete Dfam library. The simplest way to update the Dfam library
  • If you installed HiTE with Singularity or Docker, you can skip this step.
# run HiTE
python main.py \
 --genome ${genome} \
 --thread ${thread} \
 --outdir ${output_dir} \
 [other parameters]
 
 # Please enter the HiTE project directory before executing "python main.py".
 
 # e.g., my command: python main.py 
 # --genome /home/hukang/HiTE/demo/genome.fa 
 # --thread 40 
 # --outdir /home/hukang/HiTE/demo/test/

Option 4. Run with nextflow

Nextflow is built on top of the popular programming language, Groovy, and supports the execution of workflows on a wide range of computing environments, including local machines, clusters, cloud platforms, and HPC systems. It also provides advanced features such as data provenance tracking, automatic parallelization, error handling, and support for containerization technologies like Docker and Singularity.

We provide a tutorial on how to run HiTE with nextflow.

Demo data

Check HiTE/demo/genome.fa for demo genome assembly, and run HiTE with demo data (e.g., Singularity mode):

singularity run -B ${host_path}:${container_path} --pwd /HiTE ${pathTo/HiTE.sif} python main.py \
 --genome ${pathTo/genome.fa} \
 --thread 40 \
 --outdir ${outdir}

 # (1) The options "--genome" and "--outdir" need to be specified as absolute paths.
 # (2) The option "-B" is used to specify directories to be mounted.
 #     It is recommended to set ${host_path} and ${container_path} to your user directory, and ensure 
 #     that all input and output files are located within the user directory.
 # (3) "--pwd /HiTE" and "python main.py" do not need to be changed.

 # e.g., my command: singularity run -B /home/hukang:/home/hukang --pwd /HiTE HiTE.sif python main.py 
 # --genome /home/hukang/HiTE/demo/genome.fa 
 # --thread 40 
 # --outdir /home/hukang/HiTE/demo/test/

If the following files exist in the demo/test directory, it means the program runs successfully:

demo/test/
├── confident_helitron.fa (1.4 KB)
├── confident_other.fa (150 B)
├── confident_tir.fa (43 KB)
├── confident_ltr_cut.fa.cons (45 KB)
├── confident_TE.cons.fa (88 KB)
└── confident_TE.cons.fa.classified (89 KB)

Note: To avoid automatic deletion of files, set the output path parameter --outdir to an empty directory.

Predicting conserved protein domains in TEs

To predict conserved protein domains in TEs, you need to add --domain 1 parameter.

The output file is confident_TE.cons.fa.domain, which is shown as follows:

TE_name domain_name     TE_start        TE_end  domain_start    domain_end

N_111   Gypsy-50_SB_1p#LTR/Gypsy        164     4387    1       1410
...

Inputs

HiTE works with genome assemblies in fasta, fa, and fna formats using parameter --genome.

For other optional parameters, please refer to Usage.

Outputs

HiTE outputs many temporary files, which allow you to quickly restore the previous running state (use --recover 1) in case of any interruption during the running process. If the pipeline completes successfully, the output directory should look like the following:

output_dir/
├── longest_repeats_*.fa
├── longest_repeats_*.flanked.fa
├── confident_tir_*.fa
├── confident_helitron_*.fa
├── confident_other_*.fa
├── confident_ltr_cut.fa.cons
├── confident_TE.cons.fa
├── confident_TE.cons.fa.classified
├── HiTE.out (require `--annotate 1`)
├── HiTE.gff (require `--annotate 1`)
└── HiTE.tbl (require `--annotate 1`)
  1. confident_TE.cons.fa and confident_TE.cons.fa.classified are the unclassified and classified TE libraries generated by HiTE, respectively.
  2. confident_TE.cons.fa.classified can be used directly as TE library in RepeatMasker by -lib.
  3. It is worth noting that confident_TE.cons.fa.classified is generated by RepeatClassifier from RepeatModeler2, which depends on the Dfam library in RepeatMasker.
  4. Note that "*" represents the number of blocks that the genome is divided into. For example, if the genome input is 400 MB and the chunk size input is set to 100, then * is equal to 4 (400/100), and you can find 4 files: repeats_0.fa, repeats_1.fa, repeats_2.fa, and repeats_3.fa in your output directory.
  5. The HiTE.out, HiTE.gff, and HiTE.tbl files are generated using parameter --annotate 1. The HiTE.out and HiTE.gff, function as genome annotation files, with HiTE.gff being visualizable in the IGV (Integrative Genomics Viewer). Additionally, HiTE.tbl offers statistical information on the proportion of each transposon type within the genome.

Replace the Dfam library in RepeatMasker (Only for Conda)

Since the Dfam library included in RepeatMasker by default is not complete, it will seriously affect the classification effect. We recommend updating RepeatMasker with the complete Dfam 3.6 library as described at http://www.repeatmasker.org/RepeatMasker/, including download, unpack, and reconfiguration. We also provide an optional method to avoid the big Dfam.h5.gz (15 GB) download and reconfiguration, as follows:

  1. download RepeatMasker_Lib.zip from google drive or Github: git clone https://github.com/CSU-KangHu/TE_annotation.git

  2. upload RepeatMasker_Lib.zip to RepeatMasker/Libraries, where RepeatMasker is your installation directory of RepeatMasker. (e.g., ~/anaconda2/envs/HiTE/share/RepeatMasker)

  3. cd RepeatMasker/Libraries

  4. unzip RepeatMasker_Lib.zip && mv RepeatMasker_Lib/* ./

Code Structure

The code structure of HiTE is organized as follows:

Pipeline: main.py
    ├──LTR: judge_LTR_transposons.py
    ├──Homology-Non-LTR: judge_Other_transposons.py
    ├──split genome into chunks: split_genome_chunks.py
      ├──De novo TE searching: coarse_boundary.py
      ├──TIR: judge_TIR_transposons.py
      ├──Helitron: judge_Helitron_transposons.py
      └──De novo-Non-LTR: judge_Non_LTR_transposons.py
    ├──generate TE library: get_nonRedundant_lib.py
      └──unwrap nested TE: remove_nested_lib.py
    ├──classify TE library: get_classified_lib.py
    ├──genome annotation: annotate_genome.py
    ├──benchmarking reproduction: benchmarking.py
    └──clean temporary files: clean_lib.py

Usage

Type python main.py -h for help.

The simplest command:
python main.py --genome $genome_assembly --outdir $output_dir

Most frequently used commands:
python main.py --genome $genome_assembly --outdir $output_dir --thread 40 --chunk_size 400 --plant 0 --recover 1 --annotate 1

usage: main.py [-h] [--genome genome] [--thread thread_num]
               [--chunk_size chunk_size] [--miu miu] [--plant is_plant]
               [--classified is_classified] [--remove_nested is_remove_nested]
               [--domain is_domain] [--recover is_recover]
               [--annotate is_annotate] [--BM_RM2 BM_RM2] [--BM_EDTA BM_EDTA]
               [--EDTA_home EDTA_home] [--species species]
               [--skip_HiTE skip_HiTE] [--is_prev_mask is_prev_mask]
               [--is_denovo_nonltr is_denovo_nonltr] [--debug is_debug]
               [--outdir output_dir] [--flanking_len flanking_len]
               [--fixed_extend_base_threshold fixed_extend_base_threshold]
               [--tandem_region_cutoff tandem_region_cutoff]
               [--max_repeat_len max_repeat_len]
               [--chrom_seg_length chrom_seg_length]

########################## HiTE, version 3.0.0 ##########################

optional arguments:
  -h, --help            show this help message and exit
  --genome genome       Input genome assembly path
  --thread thread_num   Input thread num, default = [ 40 ]
  --chunk_size chunk_size
                        The chunk size of large genome, default = [ 400 MB ]
  --miu miu             The neutral mutation rate (per bp per ya), default = [ 1.3e-08 ]
  --plant is_plant      Is it a plant genome, 1: true, 0: false. default = [ 1 ]
  --classified is_classified
                        Whether to classify TE models, HiTE uses
                        RepeatClassifier from RepeatModeler to classify TEs,
                        1: true, 0: false. default = [ 1 ]
  --remove_nested is_remove_nested
                        Whether to remove nested TE, 1: true, 0: false.
                        default = [ 1 ]
  --domain is_domain    Whether to obtain TE domains, HiTE uses RepeatPeps.lib
                        from RepeatMasker to obtain TE domains, 1: true, 0:
                        false. default = [ 0 ]
  --recover is_recover  Whether to enable recovery mode to avoid starting from
                        the beginning, 1: true, 0: false. default = [ 0 ]
  --annotate is_annotate
                        Whether to annotate the genome using the TE library
                        generated, 1: true, 0: false. default = [ 0 ]
  --BM_RM2 BM_RM2       Whether to conduct benchmarking of RepeatModeler2, 1:
                        true, 0: false. default = [ 0 ]
  --BM_EDTA BM_EDTA     Whether to conduct benchmarking of EDTA, 1: true, 0:
                        false. default = [ 0 ]
  --EDTA_home EDTA_home
                        When conducting benchmarking of EDTA, you will be
                        asked to input EDTA home path.
  --species species     Which species you want to conduct benchmarking, six
                        species support (dmel, rice, cb, zebrafish, maize,
                        ath).
  --skip_HiTE skip_HiTE
                        Whether to skip_HiTE, 1: true, 0: false. default = [ 0 ]
  --is_prev_mask is_prev_mask
                        Whether to mask current genome used the TEs detected
                        in previous iteration, 1: true, 0: false. default = [ 1 ]
  --is_denovo_nonltr is_denovo_nonltr
                        Whether to detect non-ltr de novo, 1: true, 0: false.
                        default = [ 0 ]
  --debug is_debug      Open debug mode, and temporary files will be kept, 1:
                        true, 0: false. default = [ 0 ]
  --outdir output_dir   The path of output directory; It is recommended to use
                        a new directory to avoid automatic deletion of
                        important files.
  --flanking_len flanking_len
                        The flanking length of candidates to find the true
                        boundaries, default = [ 50 ]
  --fixed_extend_base_threshold fixed_extend_base_threshold
                        The length of variation can be tolerated during
                        pairwise alignment, default = [ 1000 ]
  --tandem_region_cutoff tandem_region_cutoff
                        Cutoff of the candidates regarded as tandem region,
                        default = [ 0.5 ]
  --max_repeat_len max_repeat_len
                        The maximum length of a single repeat, default = [ 30000 ]
  --chrom_seg_length chrom_seg_length
                        The length of genome segments, default = [ 100000 ]

Experiment reproduction

The quantitative experimental results from the HiTE paper, such as Fig. 2 and Supplementary Table 2, can be reproduced following the Experiment reproduction.

More tutorials

You may want to check out this Wiki page for more tutorials.

About

High-precision TE Annotator

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 87.0%
  • Perl 7.3%
  • Nextflow 3.6%
  • Shell 2.0%
  • Dockerfile 0.1%