Skip to content

Commit

Permalink
Update documentation
Browse files Browse the repository at this point in the history
  • Loading branch information
actions-user committed Jul 10, 2024
1 parent dc2b937 commit b8e55a2
Show file tree
Hide file tree
Showing 17 changed files with 53 additions and 58 deletions.
Binary file not shown.
Binary file not shown.
Binary file modified docs/_images/sphx_glr_plot_fmri_data_example_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified docs/_images/sphx_glr_plot_fmri_data_example_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
Expand Up @@ -542,9 +542,9 @@ randomization.

.. rst-class:: sphx-glr-timing

**Total running time of the script:** (1 minutes 0.085 seconds)
**Total running time of the script:** (1 minutes 5.057 seconds)

**Estimated memory usage:** 99 MB
**Estimated memory usage:** 101 MB


.. _sphx_glr_download_auto_examples_plot_2D_simulation_example.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -194,9 +194,9 @@ Plotting the comparison

.. rst-class:: sphx-glr-timing

**Total running time of the script:** (0 minutes 46.171 seconds)
**Total running time of the script:** (0 minutes 47.274 seconds)

**Estimated memory usage:** 28 MB
**Estimated memory usage:** 29 MB


.. _sphx_glr_download_auto_examples_plot_diabetes_variable_importance_example.py:
Expand Down
12 changes: 6 additions & 6 deletions docs/_sources/auto_examples/plot_fmri_data_example.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -184,7 +184,7 @@ You may choose a subject in [1, 2, 3, 4, 5, 6]. By default subject=2.
Downloading data from http://data.pymvpa.org/datasets/haxby2001/MD5SUMS ...
...done. (0 seconds, 0 min)
Downloading data from http://data.pymvpa.org/datasets/haxby2001/subj2-2010.01.14.tar.gz ...
Downloaded 20447232 of 291168628 bytes (7.0%, 13.6s remaining) Downloaded 62308352 of 291168628 bytes (21.4%, 7.6s remaining) Downloaded 104996864 of 291168628 bytes (36.1%, 5.5s remaining) Downloaded 147136512 of 291168628 bytes (50.5%, 4.0s remaining) Downloaded 189079552 of 291168628 bytes (64.9%, 2.8s remaining) Downloaded 231620608 of 291168628 bytes (79.5%, 1.6s remaining) Downloaded 273883136 of 291168628 bytes (94.1%, 0.5s remaining) ...done. (8 seconds, 0 min)
Downloaded 109805568 of 291168628 bytes (37.7%, 1.7s remaining) Downloaded 240345088 of 291168628 bytes (82.5%, 0.4s remaining) ...done. (3 seconds, 0 min)
Extracting data from /home/runner/nilearn_data/haxby2001/def37a305edfda829916fa14c9ea08f8/subj2-2010.01.14.tar.gz..... done.


Expand Down Expand Up @@ -281,8 +281,8 @@ Now, we compute p-values thanks to permutation tests applied to

.. code-block:: none
[Parallel(n_jobs=1)]: Done 49 tasks | elapsed: 1.6s
[Parallel(n_jobs=1)]: Done 199 tasks | elapsed: 6.6s
[Parallel(n_jobs=1)]: Done 49 tasks | elapsed: 1.7s
[Parallel(n_jobs=1)]: Done 199 tasks | elapsed: 6.4s
Expand Down Expand Up @@ -361,7 +361,7 @@ However you might benefit from clustering randomization taking
.. code-block:: none
[Parallel(n_jobs=2)]: Using backend LokyBackend with 2 concurrent workers.
[Parallel(n_jobs=2)]: Done 5 out of 5 | elapsed: 31.3s finished
[Parallel(n_jobs=2)]: Done 5 out of 5 | elapsed: 33.5s finished
Expand Down Expand Up @@ -599,9 +599,9 @@ spurious discoveries.
.. rst-class:: sphx-glr-timing

**Total running time of the script:** (1 minutes 26.859 seconds)
**Total running time of the script:** (1 minutes 26.070 seconds)

**Estimated memory usage:** 2762 MB
**Estimated memory usage:** 2790 MB


.. _sphx_glr_download_auto_examples_plot_fmri_data_example.py:
Expand Down
14 changes: 7 additions & 7 deletions docs/_sources/auto_examples/sg_execution_times.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@

Computation times
=================
**03:13.114** total execution time for 3 files **from auto_examples**:
**03:18.400** total execution time for 3 files **from auto_examples**:

.. container::

Expand All @@ -33,11 +33,11 @@ Computation times
- Time
- Mem (MB)
* - :ref:`sphx_glr_auto_examples_plot_fmri_data_example.py` (``plot_fmri_data_example.py``)
- 01:26.859
- 2762.1
- 01:26.070
- 2789.9
* - :ref:`sphx_glr_auto_examples_plot_2D_simulation_example.py` (``plot_2D_simulation_example.py``)
- 01:00.085
- 98.6
- 01:05.057
- 100.9
* - :ref:`sphx_glr_auto_examples_plot_diabetes_variable_importance_example.py` (``plot_diabetes_variable_importance_example.py``)
- 00:46.171
- 28.4
- 00:47.274
- 28.9
14 changes: 7 additions & 7 deletions docs/_sources/sg_execution_times.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@

Computation times
=================
**03:13.114** total execution time for 3 files **from all galleries**:
**03:18.400** total execution time for 3 files **from all galleries**:

.. container::

Expand All @@ -33,11 +33,11 @@ Computation times
- Time
- Mem (MB)
* - :ref:`sphx_glr_auto_examples_plot_fmri_data_example.py` (``../examples/plot_fmri_data_example.py``)
- 01:26.859
- 2762.1
- 01:26.070
- 2789.9
* - :ref:`sphx_glr_auto_examples_plot_2D_simulation_example.py` (``../examples/plot_2D_simulation_example.py``)
- 01:00.085
- 98.6
- 01:05.057
- 100.9
* - :ref:`sphx_glr_auto_examples_plot_diabetes_variable_importance_example.py` (``../examples/plot_diabetes_variable_importance_example.py``)
- 00:46.171
- 28.4
- 00:47.274
- 28.9
2 changes: 1 addition & 1 deletion docs/api.html
Original file line number Diff line number Diff line change
Expand Up @@ -138,7 +138,7 @@ <h2>Functions<a class="headerlink" href="#functions" title="Link to this heading
<td><p>Aggregation of survival function values by adaptive quantile procedure</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="generated/hidimstat.BlockBasedImportance.html#hidimstat.BlockBasedImportance" title="hidimstat.BlockBasedImportance"><code class="xref py py-obj docutils literal notranslate"><span class="pre">BlockBasedImportance</span></code></a>([estimator, ...])</p></td>
<td><p>This class implements the Block-Based Importance (BBI), consisting of a learner block (first block) and an importance block (second block). For single-level see <a href="#id3"><span class="problematic" id="id4">:footcite:t:`Chamma_NeurIPS2023`</span></a> and for group-level see <a href="#id5"><span class="problematic" id="id6">:footcite:t:`Chamma_AAAI2024`</span></a>. Parameters ---------- estimator: scikit-learn compatible estimator, default=None The provided estimator for the prediction task (First block). The default estimator is the DNN learner. Other options are (1) RF for Random Forest. importance_estimator: {scikit-learn compatible estimator or string}, default=Mod_RF The provided estimator for the importance task (Second block). Using &quot;Mod_RF&quot; will apply the modified version of the Random Forest as the importance predictor. do_hypertuning: bool, default=True Tuning the hyperparameters of the provided estimator. dict_hypertuning: dict, default=None The dictionary of hyperparameters to tune. problem_type: str, default='regression' A classification or a regression problem. bootstrap: bool, default=True Application of bootstrap sampling for the training set. split_perc: float, default=0.8 The training/validation cut for the provided data. conditional: bool, default=True The permutation or the conditional sampling approach. list_nominal: dict, default=None The dictionary of binary, nominal and ordinal variables. Perm: bool, default=False The use of permutations or random sampling with CPI-DNN. n_perm: int, default=50 The number of permutations/random sampling for each column. n_jobs: int, default=1 The number of workers for parallel processing. verbose: int, default=0 If verbose &gt; 0, the fitted iterations will be printed. groups: dict, default=None The knowledge-driven/data-driven grouping of the variables if provided. group_stacking: bool, default=False Apply the stacking-based method for the provided groups. prop_out_subLayers: int, default=0. If group_stacking is set to True, proportion of outputs for the linear sub-layers per group. index_i: int, default=None The index of the current processed iteration. random_state: int, default=2023 Fixing the seeds of the random generator. com_imp: boolean, default=True Compute or not the importance scores. group_label: list, default=None The list of group labels to perform GroupKFold Attributes ---------- ToDO.</p></td>
<td><p>This class implements the Block-Based Importance (BBI), consisting of a learner block (first block) and an importance block (second block). For single-level see CHAMMA <em>et al.</em><a href="#id6"><span class="problematic" id="id3">[#Chamma_NeurIPS2023]_</span></a> and for group-level see Chamma <em>et al.</em><a href="#id7"><span class="problematic" id="id4">[#Chamma_AAAI2024]_</span></a>. Parameters ---------- estimator: scikit-learn compatible estimator, default=None The provided estimator for the prediction task (First block). The default estimator is the DNN learner. Other options are (1) RF for Random Forest. importance_estimator: {scikit-learn compatible estimator or string}, default=Mod_RF The provided estimator for the importance task (Second block). Using &quot;Mod_RF&quot; will apply the modified version of the Random Forest as the importance predictor. do_hypertuning: bool, default=True Tuning the hyperparameters of the provided estimator. dict_hypertuning: dict, default=None The dictionary of hyperparameters to tune. problem_type: str, default='regression' A classification or a regression problem. bootstrap: bool, default=True Application of bootstrap sampling for the training set. split_perc: float, default=0.8 The training/validation cut for the provided data. conditional: bool, default=True The permutation or the conditional sampling approach. list_nominal: dict, default=None The dictionary of binary, nominal and ordinal variables. Perm: bool, default=False The use of permutations or random sampling with CPI-DNN. n_perm: int, default=50 The number of permutations/random sampling for each column. n_jobs: int, default=1 The number of workers for parallel processing. verbose: int, default=0 If verbose &gt; 0, the fitted iterations will be printed. groups: dict, default=None The knowledge-driven/data-driven grouping of the variables if provided. group_stacking: bool, default=False Apply the stacking-based method for the provided groups. prop_out_subLayers: int, default=0. If group_stacking is set to True, proportion of outputs for the linear sub-layers per group. index_i: int, default=None The index of the current processed iteration. random_state: int, default=2023 Fixing the seeds of the random generator. com_imp: boolean, default=True Compute or not the importance scores. group_label: list, default=None The list of group labels to perform GroupKFold Attributes ---------- ToDO.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="generated/hidimstat.clustered_inference.html#hidimstat.clustered_inference" title="hidimstat.clustered_inference"><code class="xref py py-obj docutils literal notranslate"><span class="pre">clustered_inference</span></code></a>(X_init, y, ward, n_clusters)</p></td>
<td><p>Clustered inference algorithm</p></td>
Expand Down
4 changes: 2 additions & 2 deletions docs/auto_examples/plot_2D_simulation_example.html
Original file line number Diff line number Diff line change
Expand Up @@ -473,8 +473,8 @@ <h2>Analysis of the results<a class="headerlink" href="#analysis-of-the-results"
conservative. In practice, Type-1 Error guarantees seem to hold
for a lower spatial tolerance. This is an additional benefit of clustering
randomization.</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> (1 minutes 0.085 seconds)</p>
<p><strong>Estimated memory usage:</strong> 99 MB</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> (1 minutes 5.057 seconds)</p>
<p><strong>Estimated memory usage:</strong> 101 MB</p>
<div class="sphx-glr-footer sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-plot-2d-simulation-example-py">
<div class="sphx-glr-download sphx-glr-download-jupyter docutils container">
<p><a class="reference download internal" download="" href="../_downloads/7d2770a07fbe419760c9ac177df4f69e/plot_2D_simulation_example.ipynb"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">plot_2D_simulation_example.ipynb</span></code></a></p>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -227,8 +227,8 @@ <h2>Plotting the comparison<a class="headerlink" href="#plotting-the-comparison"
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show" title="matplotlib.pyplot.show" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
</pre></div>
</div>
<img src="../_images/sphx_glr_plot_diabetes_variable_importance_example_001.png" srcset="../_images/sphx_glr_plot_diabetes_variable_importance_example_001.png" alt="plot diabetes variable importance example" class = "sphx-glr-single-img"/><p class="sphx-glr-timing"><strong>Total running time of the script:</strong> (0 minutes 46.171 seconds)</p>
<p><strong>Estimated memory usage:</strong> 28 MB</p>
<img src="../_images/sphx_glr_plot_diabetes_variable_importance_example_001.png" srcset="../_images/sphx_glr_plot_diabetes_variable_importance_example_001.png" alt="plot diabetes variable importance example" class = "sphx-glr-single-img"/><p class="sphx-glr-timing"><strong>Total running time of the script:</strong> (0 minutes 47.274 seconds)</p>
<p><strong>Estimated memory usage:</strong> 29 MB</p>
<div class="sphx-glr-footer sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-plot-diabetes-variable-importance-example-py">
<div class="sphx-glr-download sphx-glr-download-jupyter docutils container">
<p><a class="reference download internal" download="" href="../_downloads/a70e28075a283d5e3fe675ced733c459/plot_diabetes_variable_importance_example.ipynb"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">plot_diabetes_variable_importance_example.ipynb</span></code></a></p>
Expand Down
19 changes: 7 additions & 12 deletions docs/auto_examples/plot_fmri_data_example.html
Original file line number Diff line number Diff line change
Expand Up @@ -252,13 +252,8 @@ <h2>Gathering and preprocessing Haxby dataset for a given subject<a class="heade
...done. (0 seconds, 0 min)
Downloading data from http://data.pymvpa.org/datasets/haxby2001/subj2-2010.01.14.tar.gz ...

Downloaded 20447232 of 291168628 bytes (7.0%, 13.6s remaining)
Downloaded 62308352 of 291168628 bytes (21.4%, 7.6s remaining)
Downloaded 104996864 of 291168628 bytes (36.1%, 5.5s remaining)
Downloaded 147136512 of 291168628 bytes (50.5%, 4.0s remaining)
Downloaded 189079552 of 291168628 bytes (64.9%, 2.8s remaining)
Downloaded 231620608 of 291168628 bytes (79.5%, 1.6s remaining)
Downloaded 273883136 of 291168628 bytes (94.1%, 0.5s remaining) ...done. (8 seconds, 0 min)
Downloaded 109805568 of 291168628 bytes (37.7%, 1.7s remaining)
Downloaded 240345088 of 291168628 bytes (82.5%, 0.4s remaining) ...done. (3 seconds, 0 min)
Extracting data from /home/runner/nilearn_data/haxby2001/def37a305edfda829916fa14c9ea08f8/subj2-2010.01.14.tar.gz..... done.
</pre></div>
</div>
Expand Down Expand Up @@ -309,8 +304,8 @@ <h2>Making the inference with several algorithms<a class="headerlink" href="#mak
<span class="p">)</span>
</pre></div>
</div>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>[Parallel(n_jobs=1)]: Done 49 tasks | elapsed: 1.6s
[Parallel(n_jobs=1)]: Done 199 tasks | elapsed: 6.6s
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>[Parallel(n_jobs=1)]: Done 49 tasks | elapsed: 1.7s
[Parallel(n_jobs=1)]: Done 199 tasks | elapsed: 6.4s
</pre></div>
</div>
<p>Now, let us run the algorithm introduced by Gaonkar et al. (c.f. References).
Expand Down Expand Up @@ -344,7 +339,7 @@ <h2>Making the inference with several algorithms<a class="headerlink" href="#mak
</pre></div>
</div>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>[Parallel(n_jobs=2)]: Using backend LokyBackend with 2 concurrent workers.
[Parallel(n_jobs=2)]: Done 5 out of 5 | elapsed: 31.3s finished
[Parallel(n_jobs=2)]: Done 5 out of 5 | elapsed: 33.5s finished
</pre></div>
</div>
</section>
Expand Down Expand Up @@ -463,8 +458,8 @@ <h2>Analysis of the results<a class="headerlink" href="#analysis-of-the-results"
<div class="highlight-Python notranslate"><div class="highlight"><pre><span></span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> (1 minutes 26.859 seconds)</p>
<p><strong>Estimated memory usage:</strong> 2762 MB</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> (1 minutes 26.070 seconds)</p>
<p><strong>Estimated memory usage:</strong> 2790 MB</p>
<div class="sphx-glr-footer sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-plot-fmri-data-example-py">
<div class="sphx-glr-download sphx-glr-download-jupyter docutils container">
<p><a class="reference download internal" download="" href="../_downloads/931385a6992917f918857d6a3ee9f780/plot_fmri_data_example.ipynb"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">plot_fmri_data_example.ipynb</span></code></a></p>
Expand Down
14 changes: 7 additions & 7 deletions docs/auto_examples/sg_execution_times.html
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@

<section id="computation-times">
<span id="sphx-glr-auto-examples-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Link to this heading"></a></h1>
<p><strong>03:13.114</strong> total execution time for 3 files <strong>from auto_examples</strong>:</p>
<p><strong>03:18.400</strong> total execution time for 3 files <strong>from auto_examples</strong>:</p>
<div class="docutils container">
<style scoped>
<link href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/5.3.0/css/bootstrap.min.css" rel="stylesheet" />
Expand All @@ -132,16 +132,16 @@
</thead>
<tbody>
<tr class="row-even"><td><p><a class="reference internal" href="plot_fmri_data_example.html#sphx-glr-auto-examples-plot-fmri-data-example-py"><span class="std std-ref">Support recovery on fMRI data</span></a> (<code class="docutils literal notranslate"><span class="pre">plot_fmri_data_example.py</span></code>)</p></td>
<td><p>01:26.859</p></td>
<td><p>2762.1</p></td>
<td><p>01:26.070</p></td>
<td><p>2789.9</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="plot_2D_simulation_example.html#sphx-glr-auto-examples-plot-2d-simulation-example-py"><span class="std std-ref">Support recovery on simulated data (2D)</span></a> (<code class="docutils literal notranslate"><span class="pre">plot_2D_simulation_example.py</span></code>)</p></td>
<td><p>01:00.085</p></td>
<td><p>98.6</p></td>
<td><p>01:05.057</p></td>
<td><p>100.9</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="plot_diabetes_variable_importance_example.html#sphx-glr-auto-examples-plot-diabetes-variable-importance-example-py"><span class="std std-ref">Variable Importance on diabetes dataset</span></a> (<code class="docutils literal notranslate"><span class="pre">plot_diabetes_variable_importance_example.py</span></code>)</p></td>
<td><p>00:46.171</p></td>
<td><p>28.4</p></td>
<td><p>00:47.274</p></td>
<td><p>28.9</p></td>
</tr>
</tbody>
</table>
Expand Down
4 changes: 2 additions & 2 deletions docs/generated/hidimstat.BlockBasedImportance.html
Original file line number Diff line number Diff line change
Expand Up @@ -132,8 +132,8 @@ <h1>hidimstat.BlockBasedImportance<a class="headerlink" href="#hidimstat-blockba
<dd><p>This class implements the Block-Based Importance (BBI),
consisting of a learner block (first block) and an importance block (second
block).
For single-level see <a href="#id1"><span class="problematic" id="id2">:footcite:t:`Chamma_NeurIPS2023`</span></a> and for group-level
see <a href="#id3"><span class="problematic" id="id4">:footcite:t:`Chamma_AAAI2024`</span></a>.
For single-level see CHAMMA <em>et al.</em><a class="footnote-reference brackets" href="#footcite-chamma-neurips2023" id="id1" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a> and for group-level
see Chamma <em>et al.</em><a class="footnote-reference brackets" href="#footcite-chamma-aaai2024" id="id2" role="doc-noteref"><span class="fn-bracket">[</span>2<span class="fn-bracket">]</span></a>.
Parameters
———-
estimator: scikit-learn compatible estimator, default=None</p>
Expand Down
2 changes: 1 addition & 1 deletion docs/searchindex.js

Large diffs are not rendered by default.

Loading

0 comments on commit b8e55a2

Please sign in to comment.