Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support forecasting #2499

Merged
merged 1 commit into from
Jan 31, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions erroranalysis/requirements-dev.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4,4 +4,5 @@ pytest-mock==3.6.1

requirements-parser==0.2.0
rai_test_utils[object_detection]
scikit-learn<=1.3.2
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this can be removed now as I've made the tests work with latest scikit-learn in the PR:
#2507

interpret-core[required]<=0.3.2
17 changes: 8 additions & 9 deletions responsibleai/responsibleai/_internal/_served_model_wrapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,7 @@

import json

import requests

from raiutils.webservice import post_with_retries
from responsibleai.serialization_utilities import serialize_json_safe


Expand Down Expand Up @@ -37,14 +36,14 @@ def forecast(self, X):
# request formatting according to mlflow docs
# https://mlflow.org/docs/latest/cli.html#mlflow-models-serve
# JSON safe serialization takes care of datetime columns
response = requests.post(
url=f"http://localhost:{self.port}/invocations",
headers={"Content-Type": "application/json"},
data=json.dumps(
{"dataframe_split": X.to_dict(orient='split')},
default=serialize_json_safe))
uri = f"http://localhost:{self.port}/invocations"
input_data = json.dumps(
{"dataframe_split": X.to_dict(orient='split')},
default=serialize_json_safe)
headers = {"Content-Type": "application/json"}
try:
response.raise_for_status()
response = post_with_retries(uri, input_data, headers,
max_retries=15, retry_delay=30)
except Exception:
raise RuntimeError(
"Could not retrieve predictions. "
Expand Down
8 changes: 6 additions & 2 deletions responsibleai/responsibleai/rai_insights/rai_insights.py
Original file line number Diff line number Diff line change
Expand Up @@ -1285,10 +1285,14 @@ def _get_feature_ranges(
res_object[_UNIQUE_VALUES] = unique_value.tolist()
elif datetime_features is not None and col in datetime_features:
res_object[_RANGE_TYPE] = "datetime"
min_value = test[col].min()
min_value = pd.to_datetime(min_value)
res_object[_MIN_VALUE] = \
test[col].min().strftime(_STRF_TIME_FORMAT)
min_value.strftime(_STRF_TIME_FORMAT)
max_value = test[col].max()
max_value = pd.to_datetime(max_value)
res_object[_MAX_VALUE] = \
test[col].max().strftime(_STRF_TIME_FORMAT)
max_value.strftime(_STRF_TIME_FORMAT)
else:
col_min = test[col].min()
col_max = test[col].max()
Expand Down
25 changes: 1 addition & 24 deletions responsibleai/tests/rai_insights/test_served_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@
from unittest import mock

import pytest
import requests
from tests.common_utils import (RandomForecastingModel,
create_tiny_forecasting_dataset)

Expand Down Expand Up @@ -41,7 +40,7 @@ def rai_forecasting_insights_for_served_model():


@mock.patch("requests.post")
@mock.patch.dict("os.environ", {"RAI_MODEL_SERVING_PORT": "5123"})
@mock.patch.dict("os.environ", {"RAI_MODEL_SERVING_PORT": "5432"})
def test_served_model(
mock_post,
rai_forecasting_insights_for_served_model):
Expand All @@ -58,25 +57,3 @@ def test_served_model(
forecasts = rai_insights.model.forecast(X_test)
assert len(forecasts) == len(X_test)
assert mock_post.call_count == 1


@mock.patch("requests.post")
@mock.patch.dict("os.environ", {"RAI_MODEL_SERVING_PORT": "5123"})
def test_served_model_failed(
mock_post,
rai_forecasting_insights_for_served_model):
_, X_test, _, _ = create_tiny_forecasting_dataset()

response = requests.Response()
response.status_code = 400
response._content = b"Could not connect to host since it actively " \
b"refuses the connection."
mock_post.return_value = response

rai_insights = RAIInsights.load(RAI_INSIGHTS_DIR_NAME)
with pytest.raises(
Exception,
match="Could not retrieve predictions. "
"Model server returned status code 400 "
f"and the following response: {response.content}"):
rai_insights.model.forecast(X_test)
Loading