Skip to content

Commit

Permalink
Added simple VQE sample (#2073)
Browse files Browse the repository at this point in the history
This PR adds simple self-contained example of a Variational Quantum
Eigensolver (VQE).

This example includes:

1. Simple classical optimization to find minimum of a multi-variable
function in order to find the approximation to the minimum eigenvalue of
a Hamiltonian.
2. Finding Hamiltonian expectation value as a weighted sum of terms.
3. Finding one term expectation value by performing multiple shots of
preparing ansatz state and measuring it.
4. Ansatz state preparation similar to the circuit in the published
paper "Ground-state energy estimation of the water molecule on a trapped
ion quantum computer" (https://arxiv.org/abs/1902.10171)

To keep this sample simple and self-contained Hamiltonian is artificial
(doesn't correspond to any actual chemistry problem). Also, this sample
doesn't include any application of VQE, for example, finding a geometry
of a molecule.

---------

Co-authored-by: Dmitry Vasilevsky <[email protected]>
  • Loading branch information
DmitryVasilevsky and Dmitry Vasilevsky authored Jan 15, 2025
1 parent 5f5546f commit ca1bc18
Show file tree
Hide file tree
Showing 2 changed files with 216 additions and 0 deletions.
200 changes: 200 additions & 0 deletions samples/algorithms/SimpleVQE.qs
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@
/// # Sample
/// Simplified Sample of a Variational Quantum Eigensolver
///
/// # Description
/// This is an example of a Variational Quantum Eigensolver (VQE).
/// This example includes:
/// 1. Simple classical optimization to find minimum of a multi-variable function
/// in order to find an approximation to the minimum eigenvalue of a Hamiltonian
/// 2. Finding Hamiltonian expectation value as a weighted sum of terms.
/// 3. Finding one term expectation value by performing multiple shots.
/// 4. Ansatz state preparation similar to the circuit in the referenced paper.
/// To keep this sample simple Hamiltonian terms are generated randomly.
///
/// # Reference
/// Ground-state energy estimation of the water molecule on a trapped ion quantum
/// computer by Yunseong Nam et al., 2019. https://arxiv.org/abs/1902.10171

import Std.Arrays.IsEmpty;
import Std.Arrays.IndexRange;
import Std.Convert.IntAsDouble;
import Std.Diagnostics.Fact;
import Std.Math.AbsD;
import Std.Math.PI;

/// # Summary
/// Find the approximation to the minimum eigenvalue of a Hamiltonian by applying VQE
operation Main() : Double {

// Find the approximation to the minimum eigenvalue of a Hamiltonian
// by varying ansatz parameters to minimize its expectation value.
SimpleDescent(
// Use a number of shots when estimating Hamiltonian terms
// Actual VQE implementations may require very large number of shots.
FindHamiltonianExpectationValue(_, 100),
// Start from these angles for ansatz state preparation
[1.0, 1.0],
// Initial step to search for minimum
0.5,
// Stop optimization if step is 0
0.0,
// Stop optimization after several attempts.
// Actual VQE would need to make enough iterations
// to find energy with sufficient chemical accuracy.
50
)
}

/// # Summary
/// Find expectation value of a Hamiltonian given parameters for the
/// ansatz state and number of shots to evaluate each term.
/// Different VQE applications will have different measurements and
/// coefficients depending on the Hamiltonian being evaluated.
operation FindHamiltonianExpectationValue(thetas : Double[], shots : Int) : Double {
let terms = [
([PauliZ, PauliI, PauliI, PauliI], 0.16),
([PauliI, PauliI, PauliZ, PauliI], -0.25),
([PauliZ, PauliZ, PauliI, PauliI], 0.17),
([PauliI, PauliI, PauliZ, PauliZ], 0.45),
([PauliX, PauliX, PauliX, PauliX], 0.2),
([PauliY, PauliY, PauliY, PauliY], 0.1),
([PauliY, PauliX, PauliX, PauliY], -0.02),
([PauliX, PauliY, PauliY, PauliX], -0.22),
];
mutable value = 0.0;
for (basis, coefficient) in terms {
value += coefficient * FindTermExpectationValue(thetas, basis, shots);
}
value
}

/// # Summary
/// Find expectation value of a Hamiltonian term given parameters for the
/// ansatz state, measurement basis and number of shots to evaluate each term.
operation FindTermExpectationValue(
thetas : Double[],
pauliBasis : Pauli[],
shots : Int
) : Double {

mutable zeroCount = 0;
for _ in 1..shots {
use qs = Qubit[4];
PrepareAnsatzState(qs, thetas);
if Measure(pauliBasis, qs) == Zero {
zeroCount += 1;
}
ResetAll(qs);
}
IntAsDouble(zeroCount) / IntAsDouble(shots)
}

/// # Summary
/// Prepare the ansatz state for given parameters on a qubit register
/// This is an example of ansatz state preparation similar to the
/// unitary couple clustered method used in the referenced paper.
/// Actual VQE application will have different ansatz preparation operations.
operation PrepareAnsatzState(qs : Qubit[], thetas : Double[]) : Unit {
BosonicExitationTerm(thetas[0], qs[0], qs[2]);
CNOT(qs[0], qs[1]);
NonBosonicExitataionTerm(thetas[1], qs[0], qs[1], qs[2], qs[3]);
}

/// # Summary
/// Bosonic exitation circuit from the referenced paper.
operation BosonicExitationTerm(
theta : Double,
moX : Qubit,
moY : Qubit
) : Unit {
X(moX);
Adjoint S(moX);
Rxx(theta, moX, moY);
S(moX);
Adjoint S(moY);
Rxx(-theta, moX, moY);
S(moY);
}

/// # Summary
/// Non-bosonic exitation circuit from the referenced paper.
operation NonBosonicExitataionTerm(
theta : Double,
moXsoX : Qubit,
moXsoY : Qubit,
moYsoX : Qubit,
moYsoY : Qubit
) : Unit {
Adjoint S(moXsoX);
within {
CNOT(moXsoX, moYsoY);
CNOT(moXsoX, moYsoX);
CNOT(moXsoX, moXsoY);
H(moXsoX);
Rz(theta, moXsoX);
CNOT(moXsoY, moXsoX);
Rz(theta, moXsoX);
CNOT(moYsoY, moXsoX);
Rz(-theta, moXsoX);
CNOT(moXsoY, moXsoX);
Rz(-theta, moXsoX);
} apply {
Adjoint S(moYsoX);
CNOT(moYsoX, moXsoX);
}
S(moYsoX);
}

/// # Summary
/// Simple classical optimizer. A descent to a local minimum of function `f`.
/// Tries to takes steps in all directions and proceeds if the new point is better.
/// If no moves result in function value improvement the step size is halved.
/// Actual VQE implementations use more elaborate optimizers.
operation SimpleDescent(
f : Double[] => Double,
initialPoint : Double[],
initialStep : Double,
minimalStep : Double,
attemptLimit : Int
) : Double {
Fact(not IsEmpty(initialPoint), "Argument array must contain elements.");
Fact(initialStep > 0.0, "Initial step must be positive.");
Fact(minimalStep >= 0.0, "Minimal step must be non-negative.");

mutable bestPoint = initialPoint;
mutable bestValue = f(bestPoint);
mutable currentStep = initialStep;
mutable currentAttempt = 0;

Message($"Beginning descent from value {bestValue}.");

while (currentAttempt < attemptLimit) and (currentStep > minimalStep) {
mutable hadImprovement = false;
for i in IndexRange(initialPoint) {
let nextPoint = bestPoint w/ i <- bestPoint[i] + currentStep;
let nextValue = f(nextPoint); // Evaluate quantum part
currentAttempt = currentAttempt + 1;
if nextValue < bestValue {
hadImprovement = true;
bestValue = nextValue;
bestPoint = nextPoint;
Message($"Value improved to {bestValue}.");
}
let nextPoint = bestPoint w/ i <- bestPoint[i] - currentStep;
let nextValue = f(nextPoint); // Evaluate quantum part
currentAttempt = currentAttempt + 1;
if nextValue < bestValue {
hadImprovement = true;
bestValue = nextValue;
bestPoint = nextPoint;
Message($"Value improved to {bestValue}.");
}
}

if not hadImprovement {
currentStep = currentStep / 2.0;
}
}
Message($"Descent done. Attempts: {currentAttempt}, Step: {currentStep}, Arguments: {bestPoint}, Value: {bestValue}.");
bestValue
}
16 changes: 16 additions & 0 deletions samples_test/src/tests/algorithms.rs
Original file line number Diff line number Diff line change
Expand Up @@ -258,6 +258,22 @@ pub const SIMPLEISING_EXPECT: Expect =
expect!["[Zero, Zero, Zero, One, One, Zero, One, One, Zero]"];
pub const SIMPLEISING_EXPECT_DEBUG: Expect =
expect!["[Zero, Zero, Zero, One, One, Zero, One, One, Zero]"];
pub const SIMPLEVQE_EXPECT: Expect = expect![[r#"
Beginning descent from value 0.43300000000000005.
Value improved to 0.35300000000000004.
Value improved to 0.3454.
Value improved to 0.3422.
Value improved to 0.3216.
Descent done. Attempts: 52, Step: 0.0009765625, Arguments: [1.5, 1.0625], Value: 0.3216.
0.3216"#]];
pub const SIMPLEVQE_EXPECT_DEBUG: Expect = expect![[r#"
Beginning descent from value 0.43300000000000005.
Value improved to 0.35300000000000004.
Value improved to 0.3454.
Value improved to 0.3422.
Value improved to 0.3216.
Descent done. Attempts: 52, Step: 0.0009765625, Arguments: [1.5, 1.0625], Value: 0.3216.
0.3216"#]];
pub const SUPERDENSECODING_EXPECT: Expect = expect!["((false, true), (false, true))"];
pub const SUPERDENSECODING_EXPECT_DEBUG: Expect = expect!["((false, true), (false, true))"];
pub const SUPERPOSITION_EXPECT: Expect = expect!["Zero"];
Expand Down

0 comments on commit ca1bc18

Please sign in to comment.