Skip to content

Pytorch implementation to paper "Distantly Supervised NER with Partial Annotation Learning and Reinforcement Learning".

Notifications You must be signed in to change notification settings

mianzhang/DSNER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DSNER

Pytorch implementation to paper "Distantly Supervised NER with Partial Annotation Learning and Reinforcement Learning".

Train

see main.py

Cite

If you use the code or data, please cite the following paper:

[Yang et al., 2018] Yaosheng Yang, Wenliang Chen, Zhenghua Li, Zhengqiu He and Min Zhang. Distantly Supervised NER with Partial Annotation Learning and Reinforcement Learning, Proceedings of COLING2018, pp.2159–2169, Santa Fe, New Mexico, USA, August 20-26, 2018

Performance Comparision

Model Training Data Dataset Precision Recall F1
LSTM-CRF H EC-Dev 63.78 61.26 62.49
This Implementation(LSTM-CRF) H EC-Dev 65.14 59.79 62.35
Model Training Data Dataset Precision Recall F1
LSTM-CRF H EC-Test 59.93 58.46 59.19
This Implementation(LSTM-CRF) H EC-Test 62.81 57.41 59.99
Model Training Data Dataset Precision Recall F1
LSTM-CRF H + A EC-Dev 67.75 52.91 59.42
This Implementation(LSTM-CRF) H + A EC-Dev 69.27 54.11 60.76
Model Training Data Dataset Precision Recall F1
LSTM-CRF H + A EC-Test 62.36 48.54 54.59
This Implementation(LSTM-CRF) H + A EC-Test 65.77 50.44 57.09
Model Training Data Dataset Precision Recall F1
LSTM-CRF-PA H + A EC-Dev 60.34 64.49 62.35
This Implementation(LSTM-CRF-PA} H + A EC-Dev 62.83 65.47 64.12
Model Training Data Dataset Precision Recall F1
LSTM-CRF-PA H + A EC-Test 59.36 60.82 60.08
This Implementation(LSTM-CRF-PA} H + A EC-Test 60.70 62.75 61.70
Model Training Data Dataset Precision Recall F1
LSTM-CRF-PA+SL H + A EC-Dev 62.31 63.79 63.04
This Implementation(LSTM-CRF-PA+SL) H + A EC-Dev 64.29 66.32 65.28
Model Training Data Dataset Precision Recall F1
LSTM-CRF-PA+SL H + A EC-Test 61.57 61.33 61.45
This Implementation(LSTM-CRF-PA+SL) H + A EC-Test 59.33 61.33 60.31

Model Training Data Dataset Precision Recall F1
LSTM-CRF H NEWS-Dev 85.21 78.91 81.94
This Implementation(LSTM-CRF) H NEWS-Dev 89.72 79.17 84.11
Model Training Data Dataset Precision Recall F1
LSTM-CRF H NEWS-Test 78.50 74.50 76.45
This Implementation(LSTM-CRF) H NEWS-Test 85.78 73.90 79.40
Model Training Data Dataset Precision Recall F1
LSTM-CRF H + A NEWS-Dev 87.00 65.20 74.54
This Implementation(LSTM-CRF) H + A NEWS-Dev 86.70 66.46 75.24
Model Training Data Dataset Precision Recall F1
LSTM-CRF H + A NEWS-Test 83.41 58.96 69.09
This Implementation(LSTM-CRF) H + A NEWS-Test 84.34 62.75 71.76
Model Training Data Dataset Precision Recall F1
LSTM-CRF-PA H + A NEWS-Dev 83.78 81.79 82.77
This Implementation(LSTM-CRF-PA} H + A NEWS-Dev 86.09 82.89 84.46
Model Training Data Dataset Precision Recall F1
LSTM-CRF-PA H + A NEWS-Test 79.19 77.59 78.38
This Implementation(LSTM-CRF-PA} H + A NEWS-Test 82.27 79.48 80.85
Model Training Data Dataset Precision Recall F1
LSTM-CRF-PA+SL H + A NEWS-Dev 86.94 80.12 83.40
This Implementation(LSTM-CRF-PA+SL) H + A NEWS-Dev 89.99 82.37 86.01
Model Training Data Dataset Precision Recall F1
LSTM-CRF-PA+SL H + A NEWS-Test 81.63 76.95 79.22
This Implementation(LSTM-CRF-PA+SL) H + A NEWS-Test 84.78 77.69 81.08

About

Pytorch implementation to paper "Distantly Supervised NER with Partial Annotation Learning and Reinforcement Learning".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages