Skip to content

In this project you can find Data Storytelling, Data process, commercial context, the questions and hypotheses raised and Exploratory Data Analysis (EDA) on the dataset chosen dataset about churns in Telecom company. Project consist to identify possible patterns that are generating churns and make churn predictions

Notifications You must be signed in to change notification settings

mhurtado28/Proyecto_CODERHOUSE

Repository files navigation

Proyecto Data Science (Churn prediction)

Resumen

Abordamos la problemática de la compañía Telecom, que brinda servicios en la industria de telecomunicaciones, acerca de las deserciones de sus clientes. Por tal razón, el proyecto consiste en identificar los posibles patrones que están generando ese número de deserciones y realizar predicciones.

En el notebook podrán encontrar el proceso de Data Storytelling mostrando a continuación los objetivos, contexto comercial, problema comercial, las preguntas e hipótesis planteada y el respectivo análisis exploratorio de datos sobre el dataset elegido de la empresa Telecom que brinda servicios en la industria de telecomunicaciones y el tema a estudiar es el de las deserciones de sus clientes. La idea final sería la de identificar posibles patrones que están generando ese número de deserciones y realizar predicciones

Algunas visualizaciones

Existen áreas donde existe mayor número de clientes que desertan con relación a los que no, como lo son: Northwest/Rocky Mountain, Dc/Maryland/Virginia, Midwest, New England, South Florida, Southwest, Philadelphia, North Florida, California North. Se recomienda concentrar los esfuerzos en las áreas encontradas para identificar la causa y así tomar acciones que permitan resolver un porcentaje importante de desertores.

Se puede observar que a medida que aumenta el promedio de llamadas de voz bloqueadas (blck_vce_Mean), disminuye el importe de la tarifa por parte de los clientes (rev_Mean). Las fallas en las llamadas de voz pueden causar que los clientes desistan de servicios de llamada y por ende sus pagos mensuales se vean reducidos, afectando las ventas de la compañía.


English 🇬🇧


Data Science Project (Churn prediction)

Abstract

We work a problem of the Telecom company, which provides services in the telecommunications industry, regarding the defections of its clients. For this reason, the project consists of identifying the possible patterns that are generating that number of dropouts and making predictions.

In the notebook you can find the Data Storytelling process showing below the objectives, commercial context, commercial problem, the questions and hypotheses raised and the respective exploratory data analysis on the chosen dataset of the Telecom company that provides services in the telecommunications industry and the subject to study is that of the defections of its clients. The final idea would be to identify possible patterns that are generating that number of defections and make predictions.

Some Data visualization

There are areas where there is a higher number of customers who drop out than those who do not, such as: Northwest/Rocky Mountain, Dc/Maryland/Virginia, Midwest, New England, South Florida, Southwest, Philadelphia, North Florida, California North . It is recommended to concentrate efforts on the areas found to identify the cause and thus take actions that allow a significant percentage of deserters to be resolved.

It can be seen that as the average number of blocked voice calls increases (blck_vce_Mean), the amount of the fee by customers decreases (rev_Mean). Failures in voice calls can cause customers to give up call services and therefore their monthly payments are reduced, affecting the company's sales.

About

In this project you can find Data Storytelling, Data process, commercial context, the questions and hypotheses raised and Exploratory Data Analysis (EDA) on the dataset chosen dataset about churns in Telecom company. Project consist to identify possible patterns that are generating churns and make churn predictions

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published