Integrating spatial transcriptomic data with deep features of tissue image
python >=3.7
tensorflow >= 1.14.0
keras >= 2.3
R >=3.6.1
Seurat >=3.1.2. (For Spatial Transcriptome Data)
limma >=3.42.
Command Line
python spade_spatial_marker_by_deeplearning.py --position [Tissue Position List File] --image [High Res Image File] --scale [Scale for High Res Image] --meta [metadata csv file] --outdir [Output directory]
-
Files Info
Tissue Position List file : Tissue coordinate file includes barcodes, row and col coordinates.
High Res Image File : PNG, JPEG or TIFF for high resolution tissue images
Scale : Scale for high resolution image. For Visium, find from a scalefactos_json file.
meta : meta data for barcodes and clusters. \ -
Example
Check breastca_spatial_SPADE.R file for an example.\
Sungwoo Bae, Hongyoon Choi, Dong Soo Lee, bioRxiv 2020.06.15.150698; doi: https://doi.org/10.1101/2020.06.15.150698