from llama_stack_client.types import (
Attachment,
BatchCompletion,
CompletionMessage,
SamplingParams,
SystemMessage,
ToolCall,
ToolResponseMessage,
UserMessage,
)
Types:
from llama_stack_client.types import TelemetryGetTraceResponse
Methods:
client.telemetry.get_trace(**params) -> TelemetryGetTraceResponse
client.telemetry.log(**params) -> None
Types:
from llama_stack_client.types import (
InferenceStep,
MemoryRetrievalStep,
RestAPIExecutionConfig,
ShieldCallStep,
ToolExecutionStep,
ToolParamDefinition,
AgentCreateResponse,
)
Methods:
client.agents.create(**params) -> AgentCreateResponse
client.agents.delete(**params) -> None
Types:
from llama_stack_client.types.agents import Session, SessionCreateResponse
Methods:
client.agents.sessions.create(**params) -> SessionCreateResponse
client.agents.sessions.retrieve(**params) -> Session
client.agents.sessions.delete(**params) -> None
Types:
from llama_stack_client.types.agents import AgentsStep
Methods:
client.agents.steps.retrieve(**params) -> AgentsStep
Types:
from llama_stack_client.types.agents import AgentsTurnStreamChunk, Turn, TurnStreamEvent
Methods:
client.agents.turns.create(**params) -> AgentsTurnStreamChunk
client.agents.turns.retrieve(**params) -> Turn
Types:
from llama_stack_client.types import TrainEvalDataset
Methods:
client.datasets.create(**params) -> None
client.datasets.delete(**params) -> None
client.datasets.get(**params) -> TrainEvalDataset
Types:
from llama_stack_client.types import EvaluationJob
Types:
from llama_stack_client.types.evaluate import (
EvaluationJobArtifacts,
EvaluationJobLogStream,
EvaluationJobStatus,
)
Methods:
client.evaluate.jobs.list() -> EvaluationJob
client.evaluate.jobs.cancel(**params) -> None
Methods:
client.evaluate.jobs.artifacts.list(**params) -> EvaluationJobArtifacts
Methods:
client.evaluate.jobs.logs.list(**params) -> EvaluationJobLogStream
Methods:
client.evaluate.jobs.status.list(**params) -> EvaluationJobStatus
Methods:
client.evaluate.question_answering.create(**params) -> EvaluationJob
Methods:
client.evaluations.summarization(**params) -> EvaluationJob
client.evaluations.text_generation(**params) -> EvaluationJob
Types:
from llama_stack_client.types import (
ChatCompletionStreamChunk,
CompletionStreamChunk,
TokenLogProbs,
InferenceChatCompletionResponse,
InferenceCompletionResponse,
)
Methods:
client.inference.chat_completion(**params) -> InferenceChatCompletionResponse
client.inference.completion(**params) -> InferenceCompletionResponse
Types:
from llama_stack_client.types.inference import Embeddings
Methods:
client.inference.embeddings.create(**params) -> Embeddings
Types:
from llama_stack_client.types import RunSheidResponse
Methods:
client.safety.run_shield(**params) -> RunSheidResponse
Types:
from llama_stack_client.types import (
QueryDocuments,
MemoryCreateResponse,
MemoryRetrieveResponse,
MemoryListResponse,
MemoryDropResponse,
)
Methods:
client.memory.create(**params) -> object
client.memory.retrieve(**params) -> object
client.memory.update(**params) -> None
client.memory.list() -> object
client.memory.drop(**params) -> str
client.memory.insert(**params) -> None
client.memory.query(**params) -> QueryDocuments
Types:
from llama_stack_client.types.memory import DocumentRetrieveResponse
Methods:
client.memory.documents.retrieve(**params) -> DocumentRetrieveResponse
client.memory.documents.delete(**params) -> None
Types:
from llama_stack_client.types import PostTrainingJob
Methods:
client.post_training.preference_optimize(**params) -> PostTrainingJob
client.post_training.supervised_fine_tune(**params) -> PostTrainingJob
Types:
from llama_stack_client.types.post_training import (
PostTrainingJobArtifacts,
PostTrainingJobLogStream,
PostTrainingJobStatus,
)
Methods:
client.post_training.jobs.list() -> PostTrainingJob
client.post_training.jobs.artifacts(**params) -> PostTrainingJobArtifacts
client.post_training.jobs.cancel(**params) -> None
client.post_training.jobs.logs(**params) -> PostTrainingJobLogStream
client.post_training.jobs.status(**params) -> PostTrainingJobStatus
Types:
from llama_stack_client.types import RewardScoring, ScoredDialogGenerations
Methods:
client.reward_scoring.score(**params) -> RewardScoring
Types:
from llama_stack_client.types import SyntheticDataGeneration
Methods:
client.synthetic_data_generation.generate(**params) -> SyntheticDataGeneration
Types:
from llama_stack_client.types import BatchChatCompletion
Methods:
client.batch_inference.chat_completion(**params) -> BatchChatCompletion
client.batch_inference.completion(**params) -> BatchCompletion
Types:
from llama_stack_client.types import ModelServingSpec
Methods:
client.models.list() -> ModelServingSpec
client.models.get(**params) -> Optional
Types:
from llama_stack_client.types import MemoryBankSpec
Methods:
client.memory_banks.list() -> MemoryBankSpec
client.memory_banks.get(**params) -> Optional
Types:
from llama_stack_client.types import ShieldSpec
Methods:
client.shields.list() -> ShieldSpec
client.shields.get(**params) -> Optional