-
Notifications
You must be signed in to change notification settings - Fork 21
/
batch_inference.py
336 lines (287 loc) · 14.2 KB
/
batch_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import List, Iterable
from typing_extensions import Literal
import httpx
from ..types import batch_inference_completion_params, batch_inference_chat_completion_params
from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from .._utils import (
maybe_transform,
strip_not_given,
async_maybe_transform,
)
from .._compat import cached_property
from .._resource import SyncAPIResource, AsyncAPIResource
from .._response import (
to_raw_response_wrapper,
to_streamed_response_wrapper,
async_to_raw_response_wrapper,
async_to_streamed_response_wrapper,
)
from .._base_client import make_request_options
from ..types.shared.batch_completion import BatchCompletion
from ..types.shared_params.sampling_params import SamplingParams
from ..types.batch_inference_chat_completion_response import BatchInferenceChatCompletionResponse
__all__ = ["BatchInferenceResource", "AsyncBatchInferenceResource"]
class BatchInferenceResource(SyncAPIResource):
@cached_property
def with_raw_response(self) -> BatchInferenceResourceWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/stainless-sdks/llama-stack-python#accessing-raw-response-data-eg-headers
"""
return BatchInferenceResourceWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> BatchInferenceResourceWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/stainless-sdks/llama-stack-python#with_streaming_response
"""
return BatchInferenceResourceWithStreamingResponse(self)
def chat_completion(
self,
*,
messages_batch: Iterable[Iterable[batch_inference_chat_completion_params.MessagesBatch]],
model: str,
logprobs: batch_inference_chat_completion_params.Logprobs | NotGiven = NOT_GIVEN,
sampling_params: SamplingParams | NotGiven = NOT_GIVEN,
tool_choice: Literal["auto", "required"] | NotGiven = NOT_GIVEN,
tool_prompt_format: Literal["json", "function_tag", "python_list"] | NotGiven = NOT_GIVEN,
tools: Iterable[batch_inference_chat_completion_params.Tool] | NotGiven = NOT_GIVEN,
x_llama_stack_provider_data: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> BatchInferenceChatCompletionResponse:
"""
Args:
tool_prompt_format: `json` -- Refers to the json format for calling tools. The json format takes the
form like { "type": "function", "function" : { "name": "function_name",
"description": "function_description", "parameters": {...} } }
`function_tag` -- This is an example of how you could define your own user
defined format for making tool calls. The function_tag format looks like this,
<function=function_name>(parameters)</function>
The detailed prompts for each of these formats are added to llama cli
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {
**strip_not_given({"X-LlamaStack-ProviderData": x_llama_stack_provider_data}),
**(extra_headers or {}),
}
return self._post(
"/alpha/batch-inference/chat-completion",
body=maybe_transform(
{
"messages_batch": messages_batch,
"model": model,
"logprobs": logprobs,
"sampling_params": sampling_params,
"tool_choice": tool_choice,
"tool_prompt_format": tool_prompt_format,
"tools": tools,
},
batch_inference_chat_completion_params.BatchInferenceChatCompletionParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=BatchInferenceChatCompletionResponse,
)
def completion(
self,
*,
content_batch: List[batch_inference_completion_params.ContentBatch],
model: str,
logprobs: batch_inference_completion_params.Logprobs | NotGiven = NOT_GIVEN,
sampling_params: SamplingParams | NotGiven = NOT_GIVEN,
x_llama_stack_provider_data: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> BatchCompletion:
"""
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {
**strip_not_given({"X-LlamaStack-ProviderData": x_llama_stack_provider_data}),
**(extra_headers or {}),
}
return self._post(
"/alpha/batch-inference/completion",
body=maybe_transform(
{
"content_batch": content_batch,
"model": model,
"logprobs": logprobs,
"sampling_params": sampling_params,
},
batch_inference_completion_params.BatchInferenceCompletionParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=BatchCompletion,
)
class AsyncBatchInferenceResource(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncBatchInferenceResourceWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/stainless-sdks/llama-stack-python#accessing-raw-response-data-eg-headers
"""
return AsyncBatchInferenceResourceWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncBatchInferenceResourceWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/stainless-sdks/llama-stack-python#with_streaming_response
"""
return AsyncBatchInferenceResourceWithStreamingResponse(self)
async def chat_completion(
self,
*,
messages_batch: Iterable[Iterable[batch_inference_chat_completion_params.MessagesBatch]],
model: str,
logprobs: batch_inference_chat_completion_params.Logprobs | NotGiven = NOT_GIVEN,
sampling_params: SamplingParams | NotGiven = NOT_GIVEN,
tool_choice: Literal["auto", "required"] | NotGiven = NOT_GIVEN,
tool_prompt_format: Literal["json", "function_tag", "python_list"] | NotGiven = NOT_GIVEN,
tools: Iterable[batch_inference_chat_completion_params.Tool] | NotGiven = NOT_GIVEN,
x_llama_stack_provider_data: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> BatchInferenceChatCompletionResponse:
"""
Args:
tool_prompt_format: `json` -- Refers to the json format for calling tools. The json format takes the
form like { "type": "function", "function" : { "name": "function_name",
"description": "function_description", "parameters": {...} } }
`function_tag` -- This is an example of how you could define your own user
defined format for making tool calls. The function_tag format looks like this,
<function=function_name>(parameters)</function>
The detailed prompts for each of these formats are added to llama cli
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {
**strip_not_given({"X-LlamaStack-ProviderData": x_llama_stack_provider_data}),
**(extra_headers or {}),
}
return await self._post(
"/alpha/batch-inference/chat-completion",
body=await async_maybe_transform(
{
"messages_batch": messages_batch,
"model": model,
"logprobs": logprobs,
"sampling_params": sampling_params,
"tool_choice": tool_choice,
"tool_prompt_format": tool_prompt_format,
"tools": tools,
},
batch_inference_chat_completion_params.BatchInferenceChatCompletionParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=BatchInferenceChatCompletionResponse,
)
async def completion(
self,
*,
content_batch: List[batch_inference_completion_params.ContentBatch],
model: str,
logprobs: batch_inference_completion_params.Logprobs | NotGiven = NOT_GIVEN,
sampling_params: SamplingParams | NotGiven = NOT_GIVEN,
x_llama_stack_provider_data: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> BatchCompletion:
"""
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {
**strip_not_given({"X-LlamaStack-ProviderData": x_llama_stack_provider_data}),
**(extra_headers or {}),
}
return await self._post(
"/alpha/batch-inference/completion",
body=await async_maybe_transform(
{
"content_batch": content_batch,
"model": model,
"logprobs": logprobs,
"sampling_params": sampling_params,
},
batch_inference_completion_params.BatchInferenceCompletionParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=BatchCompletion,
)
class BatchInferenceResourceWithRawResponse:
def __init__(self, batch_inference: BatchInferenceResource) -> None:
self._batch_inference = batch_inference
self.chat_completion = to_raw_response_wrapper(
batch_inference.chat_completion,
)
self.completion = to_raw_response_wrapper(
batch_inference.completion,
)
class AsyncBatchInferenceResourceWithRawResponse:
def __init__(self, batch_inference: AsyncBatchInferenceResource) -> None:
self._batch_inference = batch_inference
self.chat_completion = async_to_raw_response_wrapper(
batch_inference.chat_completion,
)
self.completion = async_to_raw_response_wrapper(
batch_inference.completion,
)
class BatchInferenceResourceWithStreamingResponse:
def __init__(self, batch_inference: BatchInferenceResource) -> None:
self._batch_inference = batch_inference
self.chat_completion = to_streamed_response_wrapper(
batch_inference.chat_completion,
)
self.completion = to_streamed_response_wrapper(
batch_inference.completion,
)
class AsyncBatchInferenceResourceWithStreamingResponse:
def __init__(self, batch_inference: AsyncBatchInferenceResource) -> None:
self._batch_inference = batch_inference
self.chat_completion = async_to_streamed_response_wrapper(
batch_inference.chat_completion,
)
self.completion = async_to_streamed_response_wrapper(
batch_inference.completion,
)