Skip to content

mdllz/con-diffusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 

Repository files navigation

This repository contains the data, analysis, tables, text, and figures for the manuscript "Creative or Not? Hierarchical Diffusion Modeling of the Creative Evaluation Process" submitted by Michelle Donzallaz, Julia Haaf, and Claire Stevenson.

The manuscript is written using R Markdown. We used the following R version and packages.

R (Version 3.6.1; R Core Team, 2019), BayesFactor (Version 0.9.12.4.2; Morey & Rouder, 2018), bayesplot (Version 1.7.0; Gabry, Simpson, Vehtari, Betancourt, & Gelman, 2019), brms (Version 2.10.0; Bürkner, 2017, 2018), coda (Version 0.19.3; Plummer, Best, Cowles, & Vines, 2006), corrplot2017 (Wei & Simko, 2017), cowplot (Version 1.0.0; Wilke, 2019), DescTools (Version 0.99.29; al., 2019), dplyr (Version 1.0.0; Wickham, François, Henry, & Müller, 2020), ggplot2 (Version 3.3.5; Wickham, 2016), gridExtra (Version 2.3; Auguie, 2017), here (Version 0.1; Müller, 2017), irr (Version 0.84.1; Gamer, Lemon, &, 2019), lpSolve (Version 5.6.15; Berkelaar & others, 2020), magrittr (Version 2.0.1; Bache & Wickham, 2020), Matrix (Version 1.2.17; Bates & Maechler, 2019), msm (Version 1.6.9; Jackson, 2011), mvtnorm (Version 1.0.11; Genz & Bretz, 2009), papaja (Version 0.1.0.9997; Aust & Barth, 2020), psych (Version 1.8.12; Revelle, 2018), Rcpp (Version 1.0.7; Eddelbuettel & François, 2011; Eddelbuettel & Balamuta, 2018), rstan (Version 2.19.2; Stan Development Team, 2019a), StanHeaders (Version 2.19.0; Stan Development Team, 2019b), stringr (Version 1.4.0; Wickham, 2019), tibble (Version 3.1.5; Müller & Wickham, 2021), and tidyr (Version 1.0.0; Wickham & Henry, 2019).

When the packages are installed, you can open "Manuscript/Manuscript.Rmd" and knit it to produce the PDF-document as we submitted it.

Warning: Knitting the manuscript may take a while (several hours, up to a day) because it estimates two computationally expensive hierarchical drift diffusion models. It also automatically saves the generated model fit objects so that you can reuse them to explore them once the document is knitted. The model fit objects are also needed to reproduce the analysis reported in the supplementary materials.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages