Skip to content

Commit

Permalink
FDS Source: HT3D in multiple layers, enthalpy conservation
Browse files Browse the repository at this point in the history
  • Loading branch information
mcgratta committed Aug 23, 2023
1 parent 8f486e9 commit c1e9742
Show file tree
Hide file tree
Showing 7 changed files with 75 additions and 20 deletions.
22 changes: 12 additions & 10 deletions Manuals/FDS_Technical_Reference_Guide/Appendices.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1721,21 +1721,23 @@ \section{Optional 3-D Solid Phase Heat Transfer}
\begin{equation}
\label{ht3d}
\rho_{\rm s} c_{\rm s} \frac{\partial T_{\rm s}}{\partial t} = \frac{\partial}{\partial x} \left( k_{\rm s} \frac{\partial T_{\rm s}}{\partial x} \right) +
\frac{\partial}{\partial y} \left( k_{\rm s} \frac{\partial T_{\rm s}}{\partial y} \right) +
\frac{\partial}{\partial y} \left( k_{\rm s} \frac{\partial T_{\rm s}}{\partial y} \right) +
\frac{\partial}{\partial z} \left( k_{\rm s} \frac{\partial T_{\rm s}}{\partial z} \right) + \dot{q}'''_{\rm s}
\end{equation}
One method of solution is to decompose the temperature field according to coordinate direction under the assumption that the discretization of each component is the same as its 1-D counterpart:
\be
T_{\rm s}(x,y,z,t) = \frac{1}{3} \left( T_{{\rm s},x}(x,t) + T_{{\rm s},y}(y,t) + T_{{\rm s},z}(z,t) \right)
\ee
Over the course of three time steps, each of the following equations can be solved using the Crank-Nicolson scheme described above to form an alternating direction implicit (ADI) scheme:
The method of solution is to split this equation using the following alternating direction implicit (ADI) scheme:
\begin{align}
\label{ht3d_xyz}
\frac{ \rho_{\rm s} c_{\rm s}}{3} \frac{\partial T_{{\rm s},x}}{\partial t} & = \frac{\partial}{\partial x} \left( k_{\rm s} \frac{\partial T_{{\rm s},x}}{\partial x} \right) + \frac{\dot{q}'''_{\rm s}}{3} \\
\frac{ \rho_{\rm s} c_{\rm s}}{3} \frac{\partial T_{{\rm s},y}}{\partial t} & = \frac{\partial}{\partial y} \left( k_{\rm s} \frac{\partial T_{{\rm s},y}}{\partial y} \right) + \frac{\dot{q}'''_{\rm s}}{3} \\
\frac{ \rho_{\rm s} c_{\rm s}}{3} \frac{\partial T_{{\rm s},z}}{\partial t} & = \frac{\partial}{\partial z} \left( k_{\rm s} \frac{\partial T_{{\rm s},z}}{\partial z} \right) + \frac{\dot{q}'''_{\rm s}}{3}
\frac{ \rho_{\rm s} c_{\rm s}}{3} \frac{\partial T_{{\rm s}}}{\partial t} & = \frac{\partial}{\partial x} \left( k_{\rm s} \frac{\partial T_{{\rm s}}}{\partial x} \right) + \frac{\dot{q}'''_{\rm s}}{3} \\
\frac{ \rho_{\rm s} c_{\rm s}}{3} \frac{\partial T_{{\rm s}}}{\partial t} & = \frac{\partial}{\partial y} \left( k_{\rm s} \frac{\partial T_{{\rm s}}}{\partial y} \right) + \frac{\dot{q}'''_{\rm s}}{3} \\
\frac{ \rho_{\rm s} c_{\rm s}}{3} \frac{\partial T_{{\rm s}}}{\partial t} & = \frac{\partial}{\partial z} \left( k_{\rm s} \frac{\partial T_{{\rm s}}}{\partial z} \right) + \frac{\dot{q}'''_{\rm s}}{3}
\end{align}
Between each step, the resulting temperature field from, say, the $x$ direction is interpolated onto the $y$ and $z$ directions via linear interpolation. Because of this, the spatial resolution of each direction need not be the same nor uniform. As with the 1-D solver, cells can be clustered near the boundary to capture steep gradients in temperature.
The solution of the equation is updated over the course of three gas phase time steps of size $\delta t$. For each coordinate direction, the temperature field is finely gridded near the surface and coarsely gridded in the interior, typically. Thus, the temperature field, $T_{\rm s}(x,y,z,t)$, is discretized differently in each direction. For example, for each surface cell normal to the $x$ direction, the 1-D temperature array in depth is $T_{{\rm s},x,i}$, where $1\le i \le N_x$, and $N_x$ is the number of non-uniformly spaced internal cells spanning the entire width of the solid in the $x$ direction. This is exactly the same approach taken above for 1-D heat conduction in solids with ``exposed'' back surfaces. Likewise, $T_{\rm s}(x,y,z,t)$ is discretized $T_{{\rm s},y,j}$ and $T_{{\rm s},z,k}$ in the $y$ and $z$ directions, respectively.

In each of the three steps, the 1-D heat conduction equation is solved in one of the three coordinate directions using the Crank-Nicolson (C-N) scheme described above, except now the implicit update spans three gas phase time steps, $3\, \delta t$. The temperature fields spanning the other two coordinate directions are updated explicitly. The change in temperature due to the implicit C-N update is denoted $\Delta T_{{\rm s},x,i}$, with similar expressions for the $y$ and $z$ updates. The explicit update taken during the two steps for which $T_{{\rm s},x,i}$ is not updated implicitly transfers enthalpy in the $y$ and $z$ directions:
\be
\rho_{{\rm s},i} c_{{\rm s},i} T_{{\rm s},x,i}^{n+1} = \rho_{{\rm s},i} c_{{\rm s},i} T_{{\rm s},x,i}^{n} + \frac{1}{2} \left[ \sum_j w_j \rho_{{\rm s},j} c_{{\rm s},j} \Delta T_{{\rm s},y,j} + \sum_k w_k \rho_{{\rm s},k} c_{{\rm s},k} \Delta T_{{\rm s},z,k} \right]
\ee
The coefficients, $w_j$ and $w_k$, are the fractions of cell $i$ of the $x$ direction discretization overlapped by cells $j$ and $k$ of the $y$ and $z$ discretizations, respectively.

This type of splitting scheme is discussed by Toro~\cite{Toro}, Chapter~16, ``Methods for Multi-Dimensional PDEs.''

Expand Down
12 changes: 6 additions & 6 deletions Manuals/FDS_Verification_Guide/FDS_Verification_Guide.tex
Original file line number Diff line number Diff line change
Expand Up @@ -4416,8 +4416,6 @@ \subsection{Energy Conservation in a 3-D Solid (\texorpdfstring{\textct{ht3d\_en
Figure~\ref{fig:ht3d_energy_conservation_2} displays the energy balance for cases where the internal grid cell is 0.25 times the gas phase grid cell size (left plot), and where the internal grid cells stretch as they would for a 1-D heat conduction calculation (right). The grid stretching is not recommended for the 3-D solver.

\begin{figure}[ht]
\centering
\vskip\baselineskip
\begin{tabular*}{\textwidth}{l@{\extracolsep{\fill}}r}
\includegraphics[height=2.2in]{SCRIPT_FIGURES/ht3d_energy_conservation_2} &
\includegraphics[height=2.2in]{SCRIPT_FIGURES/ht3d_energy_conservation_3}
Expand All @@ -4426,12 +4424,14 @@ \subsection{Energy Conservation in a 3-D Solid (\texorpdfstring{\textct{ht3d\_en
\label{fig:ht3d_energy_conservation_2}
\end{figure}

Figure~\ref{fig:ht3d_energy_conservation_4} compares the integrated net heat flux versus the internal enthalpy in a case where a small hot block is placed above a larger block for which 3-D heat conduction is invoked. In this case, the block has a thermal conductivity of 0.1~W/m/K, typical of an insulating material. The internal cells cluster near all six faces of the block as would be done in a 1-D case. The calculation of the internal enthalpy can be performed in any coordinate direction, both positive and negative. In this case, the positive $x$ direction is chosen, whereas the hot block is placed above the larger block. This ensures that the energy is properly transferred in the lateral directions.
Figure~\ref{fig:ht3d_energy_conservation_4} compares the integrated net heat flux versus the internal enthalpy in a case where a small hot block is placed above a larger block for which 3-D heat conduction is invoked. In one case (left plot), the block is made of one material with a thermal conductivity of 0.1~W/m/K, typical of insulation. The internal cells cluster near all six faces of the block as would be done in a 1-D case. The calculation of the internal enthalpy can be performed in any coordinate direction, both positive and negative. In this case, the positive $x$ direction is chosen, whereas the hot block is placed above the larger block. This ensures that the energy is properly transferred in the lateral directions. In a second case (right plot), the solid block consists of a thin, 1~cm thick layer of insulation over a solid block of steel.

\begin{figure}[ht]
\centering
\includegraphics[height=2.2in]{SCRIPT_FIGURES/ht3d_energy_conservation_4}
\caption[Additional \textct{ht3d\_energy\_conservation} test case]{Comparison of the integrated net heat flux versus the internal enthalpy of a solid block with relativley low thermal conductivity.}
\begin{tabular*}{\textwidth}{l@{\extracolsep{\fill}}r}
\includegraphics[height=2.2in]{SCRIPT_FIGURES/ht3d_energy_conservation_4} &
\includegraphics[height=2.2in]{SCRIPT_FIGURES/ht3d_energy_conservation_5}
\end{tabular*}
\caption[Additional \textct{ht3d\_energy\_conservation} test cases, 4 and 5]{Comparison of the integrated net heat flux versus the internal enthalpy of a homogenous solid block with relativley low thermal conductivity (left), and one with multiple layers (right).}
\label{fig:ht3d_energy_conservation_4}
\end{figure}

Expand Down
6 changes: 3 additions & 3 deletions Source/dump.f90
Original file line number Diff line number Diff line change
Expand Up @@ -9028,7 +9028,7 @@ REAL(EB) FUNCTION SOLID_PHASE_OUTPUT(NM,INDX,Y_INDEX,Z_INDEX,PART_INDEX,OPT_WALL
SOLID_PHASE_OUTPUT = 0._EB
IF (SF%THERMAL_BC_INDEX==THERMALLY_THICK) THEN
IF (SF%PYROLYSIS_MODEL==PYROLYSIS_PREDICTED .OR. SF%HT_DIM>1) THEN
NWP = SUM(ONE_D%N_LAYER_CELLS(1:SF%N_LAYERS))
NWP = SUM(ONE_D%N_LAYER_CELLS(1:ONE_D%N_LAYERS))
X0 = SUM(ONE_D%LAYER_THICKNESS)
ELSE
NWP = SF%N_CELLS_INI
Expand All @@ -9043,9 +9043,9 @@ REAL(EB) FUNCTION SOLID_PHASE_OUTPUT(NM,INDX,Y_INDEX,Z_INDEX,PART_INDEX,OPT_WALL
CASE (SURF_SPHERICAL)
VOL = FOTHPI*((X0-ONE_D%X(I-1))**3-(X0-ONE_D%X(I))**3)
END SELECT
H_MATL_LOOP: DO J=1,SF%N_MATL
H_MATL_LOOP: DO J=1,ONE_D%N_MATL
IF (ONE_D%MATL_COMP(J)%RHO(I)<=TWO_EPSILON_EB) CYCLE H_MATL_LOOP
ML => MATERIAL(SF%MATL_INDEX(J))
ML => MATERIAL(ONE_D%MATL_INDEX(J))
ITMP = INT(ONE_D%TMP(I))
SOLID_PHASE_OUTPUT = SOLID_PHASE_OUTPUT + ONE_D%MATL_COMP(J)%RHO(I)*VOL * &
(ML%H(ITMP)+(ONE_D%TMP(I)-REAL(ITMP,EB))*(ML%H(MIN(I_MAX_TEMP,ITMP+1))-ML%H(ITMP)))
Expand Down
3 changes: 2 additions & 1 deletion Source/wall.f90
Original file line number Diff line number Diff line change
Expand Up @@ -793,7 +793,8 @@ SUBROUTINE HT3D_TEMPERATURE_EXCHANGE(NM)
ONE_D2 => MESHES(NM2)%BOUNDARY_ONE_D(TW2%OD_INDEX)
ENDIF
IF (ABS(BC2%IOR)/=M%HT_3D_SWEEP_DIRECTION) CYCLE WEIGHT_LOOP
ONE_D%TMP(I) = ONE_D%TMP(I) + THR_D%NODE(I)%ALTERNATE_WALL_WEIGHT(II)*ONE_D2%DELTA_TMP(I_NODE)
ONE_D%TMP(I) = (ONE_D%RHO_C_S(I)*ONE_D%TMP(I) + &
THR_D%NODE(I)%ALTERNATE_WALL_WEIGHT(II)*ONE_D2%RHO_C_S(I_NODE)*ONE_D2%DELTA_TMP(I_NODE))/ONE_D%RHO_C_S(I)
ENDDO WEIGHT_LOOP
IF (THR_D%NODE(I)%MESH_NUMBER==NM) M%TMP(THR_D%NODE(I)%I,THR_D%NODE(I)%J,THR_D%NODE(I)%K) = ONE_D%TMP(I)
ENDDO NODE_LOOP
Expand Down
1 change: 1 addition & 0 deletions Utilities/Matlab/FDS_verification_dataplot_inputs.csv
Original file line number Diff line number Diff line change
Expand Up @@ -263,6 +263,7 @@ d,ht3d_energy_conservation,Heat_Transfer/ht3d_energy_conservation_git.txt,Heat_T
d,ht3d_energy_conservation,Heat_Transfer/ht3d_energy_conservation_2_git.txt,Heat_Transfer/ht3d_energy_conservation_2_devc.csv,2,3,Time,E3D,Enthalpy,k-,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Heat_Transfer/ht3d_energy_conservation_2_devc.csv,2,3,Time,Q_net,Integrated Heat Flux,ko,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Energy Balance (ht3d\_energy\_conservation\_2),Time (s),Enthalpy (kJ),0,10,1,0,100,1,no,0.05 0.90,SouthEast,,1,linear,FDS_Verification_Guide/SCRIPT_FIGURES/ht3d_energy_conservation_2,Relative Error,end,1.00E-02,Heat Transfer,r^,r,TeX
d,ht3d_energy_conservation,Heat_Transfer/ht3d_energy_conservation_3_git.txt,Heat_Transfer/ht3d_energy_conservation_3_devc.csv,2,3,Time,E3D,Enthalpy,k-,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Heat_Transfer/ht3d_energy_conservation_3_devc.csv,2,3,Time,Q_net,Integrated Heat Flux,ko,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Energy Balance (ht3d\_energy\_conservation\_3),Time (s),Enthalpy (kJ),0,10,1,0,100,1,no,0.05 0.90,SouthEast,,1,linear,FDS_Verification_Guide/SCRIPT_FIGURES/ht3d_energy_conservation_3,Relative Error,end,3.00E-02,Heat Transfer,r^,r,TeX
d,ht3d_energy_conservation,Heat_Transfer/ht3d_energy_conservation_4_git.txt,Heat_Transfer/ht3d_energy_conservation_4_devc.csv,2,3,Time,H1,Enthalpy,k-,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Heat_Transfer/ht3d_energy_conservation_4_devc.csv,2,3,Time,Q_net,Integrated Heat Flux,ko,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Energy Balance (ht3d\_energy\_conservation\_4),Time (s),Enthalpy (kJ),0,100,1,0,3,1,no,0.05 0.90,SouthEast,,1,linear,FDS_Verification_Guide/SCRIPT_FIGURES/ht3d_energy_conservation_4,Relative Error,end,1.00E-02,Heat Transfer,r^,r,TeX
d,ht3d_energy_conservation,Heat_Transfer/ht3d_energy_conservation_5_git.txt,Heat_Transfer/ht3d_energy_conservation_5_devc.csv,2,3,Time,H1,Enthalpy,k-,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Heat_Transfer/ht3d_energy_conservation_5_devc.csv,2,3,Time,Q_net,Integrated Heat Flux,ko,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Energy Balance (ht3d\_energy\_conservation\_5),Time (s),Enthalpy (kJ),0,100,1,0,3,1,no,0.05 0.90,SouthEast,,1,linear,FDS_Verification_Guide/SCRIPT_FIGURES/ht3d_energy_conservation_5,Relative Error,end,1.00E-02,Heat Transfer,r^,r,TeX
d,ht3d_ibeam,Heat_Transfer/ht3d_ibeam_git.txt,Heat_Transfer/ht3d_ibeam_FEM_results.csv,2,3,Time,Ts_x195_40|Ts_x145_30|Ts_x095_20|Ts_x025_40|Ts_x195_1|Ts_x025_1,FEM 1|FEM 2|FEM 3|FEM 4|FEM 5|FEM 6,ro|k^|bd|gsq|mv|c>,0,100000,,0,100000,-1.00E+09,1.00E+09,20,Heat_Transfer/ht3d_ibeam_devc.csv,2,3,Time,TS_x195-40|TS_x145-30|TS_x095-20|TS_x025-40|TS_x195-01|TS_x025-01,FDS 1|FDS 2|FDS 3|FDS 4|FDS 5|FDS 6,r-|k-|b-|g-|m-|c-,0,100000,,0,100000,-1.00E+09,1.00E+09,20,HT3D I-beam Surface Temperature (ht3d\_ibeam),Time (s),Temperature (°C),0,3600,1,0,1000,1,no,0.05 0.90,EastOutside,,1.2,linear,FDS_Verification_Guide/SCRIPT_FIGURES/ht3d_ibeam_TS,Relative Error,end,8.00E-02,Heat Transfer,r^,r,TeX
d,ht3d_mass_conservation,Heat_Transfer/ht3d_mass_conservation_git.txt,Heat_Transfer/ht3d_mass_conservation.csv,1,2,Time,Mass,Exact (Mass),ko,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Heat_Transfer/ht3d_mass_conservation_mass.csv,2,3,Time,WOOD MOISTURE,FDS (WOOD MOISTURE),k-,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Mass Balance (ht3d\_mass\_conservation),Time (s),Mass (kg),0,180,1,0,0.3,1,no,0.05 0.90,SouthEast,,1,linear,FDS_Verification_Guide/SCRIPT_FIGURES/ht3d_mass_conservation,Relative Error,end,1.00E-02,Heat Transfer,r^,r,TeX
d,ht3d_mass_conservation,Heat_Transfer/ht3d_mass_conservation_2_git.txt,Heat_Transfer/ht3d_mass_conservation.csv,1,2,Time,Mass,Exact (Mass),ko,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Heat_Transfer/ht3d_mass_conservation_2_mass.csv,2,3,Time,WOOD MOISTURE,FDS (WOOD MOISTURE),k-,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Mass Balance (ht3d\_mass\_conservation\_2),Time (s),Mass (kg),0,180,1,0,0.3,1,no,0.05 0.90,SouthEast,,1,linear,FDS_Verification_Guide/SCRIPT_FIGURES/ht3d_mass_conservation_2,Relative Error,end,1.00E-02,Heat Transfer,r^,r,TeX
Expand Down
1 change: 1 addition & 0 deletions Verification/FDS_Cases.sh
Original file line number Diff line number Diff line change
Expand Up @@ -251,6 +251,7 @@ $QFDS -d Heat_Transfer ht3d_energy_conservation.fds
$QFDS -d Heat_Transfer ht3d_energy_conservation_2.fds
$QFDS -d Heat_Transfer ht3d_energy_conservation_3.fds
$QFDS -p 8 -d Heat_Transfer ht3d_energy_conservation_4.fds
$QFDS -p 8 -d Heat_Transfer ht3d_energy_conservation_5.fds
$QFDS -d Heat_Transfer ht3d_ibeam.fds
$QFDS -d Heat_Transfer ht3d_mass_conservation.fds
$QFDS -d Heat_Transfer ht3d_mass_conservation_2.fds
Expand Down
50 changes: 50 additions & 0 deletions Verification/Heat_Transfer/ht3d_energy_conservation_5.fds
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
&HEAD CHID='ht3d_energy_conservation_5' /

&MESH IJK=25,25,25, XB=-0.25,0.00,-0.25,0.00,-0.25,0.00, MULT_ID='mesh' /
&MULT ID='mesh', DX=0.25, DY=0.25, DZ=0.25, I_UPPER=1, J_UPPER=1, K_UPPER=1 /

&TIME T_END=100 /

&VENT DB='XMIN', SURF_ID='OPEN' /
&VENT DB='XMAX', SURF_ID='OPEN' /
&VENT DB='YMIN', SURF_ID='OPEN' /
&VENT DB='YMAX', SURF_ID='OPEN' /
&VENT DB='ZMIN', SURF_ID='OPEN' /
&VENT DB='ZMAX', SURF_ID='OPEN' /

&OBST XB=-0.20, 0.20,-0.20, 0.20,-0.05, 0.05, SURF_ID='SLAB', MATL_ID='STUFF' /
&HOLE XB=-0.19, 0.19,-0.19, 0.19,-0.04, 0.04 /
&OBST XB=-0.19, 0.19,-0.19, 0.19,-0.04, 0.04, PERMIT_HOLE=F, MATL_ID='STEEL' /

&OBST XB=-0.01, 0.01,-0.01, 0.01, 0.06, 0.07, SURF_ID='HOT' /

&SURF ID='SLAB', HT3D=T, COLOR='BEIGE' /

&MATL ID='STUFF', DENSITY= 50, SPECIFIC_HEAT=1.0, CONDUCTIVITY=0.1 /
&MATL ID='STEEL', DENSITY=7500, SPECIFIC_HEAT=0.5, CONDUCTIVITY=50. /

&SURF ID='HOT', TMP_FRONT=1000, COLOR='RED' /

&BNDF QUANTITY='WALL TEMPERATURE', CELL_CENTERED=T /

&SLCF PBY=0.001, QUANTITY='TEMPERATURE', CELL_CENTERED=T /

&DUMP DT_PROF=5., DT_DEVC=4. /

&PROF ID='top', QUANTITY='TEMPERATURE', XYZ=0.005,0.005,0.050, IOR= 3 /
&PROF ID='side', QUANTITY='TEMPERATURE', XYZ=0.200,0.005,0.040, IOR= 1 /
&PROF ID='bottom', QUANTITY='TEMPERATURE', XYZ=0.005,0.005,-.050, IOR=-3 /

'WALL ENTHALPY' is the energy (kJ) of the volume of solid bounded by the surface cell. The CONVERSION_FACTOR is intended to
cancel out the cell area 0.01 m x 0.01 m

&DEVC XB=-0.24,0.24,-0.24,0.24,-0.24,0.24, QUANTITY='WALL ENTHALPY', SPATIAL_STATISTIC='SURFACE INTEGRAL', ID='H1', IOR=-1, TIME_AVERAGED=F, RELATIVE=T, CONVERSION_FACTOR=10000, SURF_ID='SLAB' /
&DEVC XB=-0.24,0.24,-0.24,0.24,-0.24,0.24, QUANTITY='WALL ENTHALPY', SPATIAL_STATISTIC='SURFACE INTEGRAL', ID='H2', IOR= 1, TIME_AVERAGED=F, RELATIVE=T, CONVERSION_FACTOR=10000, SURF_ID='SLAB' /
&DEVC XB=-0.24,0.24,-0.24,0.24,-0.24,0.24, QUANTITY='WALL ENTHALPY', SPATIAL_STATISTIC='SURFACE INTEGRAL', ID='H3', IOR=-2, TIME_AVERAGED=F, RELATIVE=T, CONVERSION_FACTOR=10000, SURF_ID='SLAB' /
&DEVC XB=-0.24,0.24,-0.24,0.24,-0.24,0.24, QUANTITY='WALL ENTHALPY', SPATIAL_STATISTIC='SURFACE INTEGRAL', ID='H4', IOR= 2, TIME_AVERAGED=F, RELATIVE=T, CONVERSION_FACTOR=10000, SURF_ID='SLAB' /
&DEVC XB=-0.24,0.24,-0.24,0.24,-0.24,0.24, QUANTITY='WALL ENTHALPY', SPATIAL_STATISTIC='SURFACE INTEGRAL', ID='H5', IOR=-3, TIME_AVERAGED=F, RELATIVE=T, CONVERSION_FACTOR=10000, SURF_ID='SLAB' /
&DEVC XB=-0.24,0.24,-0.24,0.24,-0.24,0.24, QUANTITY='WALL ENTHALPY', SPATIAL_STATISTIC='SURFACE INTEGRAL', ID='H6', IOR= 3, TIME_AVERAGED=F, RELATIVE=T, CONVERSION_FACTOR=10000, SURF_ID='SLAB' /

&DEVC XB=-0.24,0.24,-0.24,0.24,-0.24,0.24, QUANTITY='NET HEAT FLUX', SPATIAL_STATISTIC='SURFACE INTEGRAL', TEMPORAL_STATISTIC='TIME INTEGRAL', ID='Q_net', SURF_ID='SLAB' /

&TAIL /

0 comments on commit c1e9742

Please sign in to comment.