This repo enables measuring the sensitivity of anomaly detection to distance from the camera on the LostAndFound dataset as described in Dense anomaly detection by robust learning on synthetic negative data.
Available in requirements.txt
- Pillow
- prettytable
- torch
- torchvision
For LostAndFound dataset download simply run:
./prepare_dataset.sh
Simple demo evaluation script:
python evaluate.py
Example output:
+----------------+-------+-------+-------+-------+-------+-------+-------+-------+-------+
| Range (m) | 5-10 | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 | 40-45 | 45-50 |
+----------------+-------+-------+-------+-------+-------+-------+-------+-------+-------+
| AP | 48.3 | 52.94 | 55.21 | 54.06 | 51.94 | 42.07 | 37.11 | 43.75 | 35.23 |
| FPR at TPR 95% | 7.95 | 10.23 | 11.33 | 16.42 | 20.52 | 26.14 | 28.98 | 34.32 | 43.8 |
| AUROC | 98.07 | 97.7 | 97.41 | 96.52 | 95.36 | 93.5 | 91.45 | 90.2 | 86.99 |
+----------------+-------+-------+-------+-------+-------+-------+-------+-------+-------+
If used, please cite:
@article{grcic22arxiv,
author = {Matej Grcic and
Petra Bevandic and
Zoran Kalafatic and
Sinisa Segvic},
title = {Dense anomaly detection by robust learning on synthetic negative data},
journal = {CoRR},
volume = {abs/2112.12833},
year = {2021}
}