Skip to content

lzmax888/backtesting.py

 
 

Repository files navigation

Backtesting.py

Build Status Code Coverage Backtesting on PyPI PyPI downloads GitHub Sponsors

Backtest trading strategies with Python.

Project website

Documentation

Star the project if you use it.

Installation

$ pip install backtesting

Usage

from backtesting import Backtest, Strategy
from backtesting.lib import crossover

from backtesting.test import SMA, GOOG


class SmaCross(Strategy):
    def init(self):
        price = self.data.Close
        self.ma1 = self.I(SMA, price, 10)
        self.ma2 = self.I(SMA, price, 20)

    def next(self):
        if crossover(self.ma1, self.ma2):
            self.buy()
        elif crossover(self.ma2, self.ma1):
            self.sell()


bt = Backtest(GOOG, SmaCross, commission=.002,
              exclusive_orders=True)
stats = bt.run()
bt.plot()

Results in:

Start                     2004-08-19 00:00:00
End                       2013-03-01 00:00:00
Duration                   3116 days 00:00:00
Exposure Time [%]                       94.27
Equity Final [$]                     68935.12
Equity Peak [$]                      68991.22
Return [%]                             589.35
Buy & Hold Return [%]                  703.46
Return (Ann.) [%]                       25.42
Volatility (Ann.) [%]                   38.43
Sharpe Ratio                             0.66
Sortino Ratio                            1.30
Calmar Ratio                             0.77
Max. Drawdown [%]                      -33.08
Avg. Drawdown [%]                       -5.58
Max. Drawdown Duration      688 days 00:00:00
Avg. Drawdown Duration       41 days 00:00:00
# Trades                                   93
Win Rate [%]                            53.76
Best Trade [%]                          57.12
Worst Trade [%]                        -16.63
Avg. Trade [%]                           1.96
Max. Trade Duration         121 days 00:00:00
Avg. Trade Duration          32 days 00:00:00
Profit Factor                            2.13
Expectancy [%]                           6.91
SQN                                      1.78
_strategy              SmaCross(n1=10, n2=20)
_equity_curve                          Equ...
_trades                       Size  EntryB...
dtype: object

plot of trading simulation

Find more usage examples in the documentation.

Features

  • Simple, well-documented API
  • Blazing fast execution
  • Built-in optimizer
  • Library of composable base strategies and utilities
  • Indicator-library-agnostic
  • Supports any financial instrument with candlestick data
  • Detailed results
  • Interactive visualizations

Alternatives

See alternatives.md for a list of alternative Python backtesting frameworks and related packages.

About

🔎 📈 🐍 💰 Backtest trading strategies in Python.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 69.9%
  • Python 29.7%
  • Other 0.4%