There is an undirected tree with n
nodes labeled from 0
to n - 1
and n - 1
edges.
You are given a 2D integer array edges
of length n - 1
where edges[i] = [ai, bi]
indicates that there is an edge between nodes ai
and bi
in the tree. You are also given an integer array restricted
which represents restricted nodes.
Return the maximum number of nodes you can reach from node 0
without visiting a restricted node.
Note that node 0
will not be a restricted node.
Example 1:
Input: n = 7, edges = [[0,1],[1,2],[3,1],[4,0],[0,5],[5,6]], restricted = [4,5] Output: 4 Explanation: The diagram above shows the tree. We have that [0,1,2,3] are the only nodes that can be reached from node 0 without visiting a restricted node.
Example 2:
Input: n = 7, edges = [[0,1],[0,2],[0,5],[0,4],[3,2],[6,5]], restricted = [4,2,1] Output: 3 Explanation: The diagram above shows the tree. We have that [0,5,6] are the only nodes that can be reached from node 0 without visiting a restricted node.
Constraints:
2 <= n <= 105
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
edges
represents a valid tree.1 <= restricted.length < n
1 <= restricted[i] < n
- All the values of
restricted
are unique.
class Solution:
def reachableNodes(
self, n: int, edges: List[List[int]], restricted: List[int]
) -> int:
g = defaultdict(list)
vis = [False] * n
for v in restricted:
vis[v] = True
for a, b in edges:
g[a].append(b)
g[b].append(a)
def dfs(u):
nonlocal ans
if vis[u]:
return
ans += 1
vis[u] = True
for v in g[u]:
dfs(v)
ans = 0
dfs(0)
return ans
class Solution:
def reachableNodes(self, n: int, edges: List[List[int]], restricted: List[int]) -> int:
s = set(restricted)
g = defaultdict(list)
for a, b in edges:
g[a].append(b)
g[b].append(a)
q = deque([0])
vis = [False] * n
for v in restricted:
vis[v] = True
ans = 0
while q:
i = q.popleft()
ans += 1
vis[i] = True
for j in g[i]:
if not vis[j]:
q.append(j)
return ans
class Solution {
private List<Integer>[] g;
private boolean[] vis;
private int ans;
public int reachableNodes(int n, int[][] edges, int[] restricted) {
g = new List[n];
for (int i = 0; i < n; ++i) {
g[i] = new ArrayList<>();
}
vis = new boolean[n];
for (int v : restricted) {
vis[v] = true;
}
for (int[] e : edges) {
int a = e[0], b = e[1];
g[a].add(b);
g[b].add(a);
}
ans = 0;
dfs(0);
return ans;
}
private void dfs(int u) {
if (vis[u]) {
return;
}
++ans;
vis[u] = true;
for (int v : g[u]) {
dfs(v);
}
}
}
class Solution {
public int reachableNodes(int n, int[][] edges, int[] restricted) {
List<Integer>[] g = new List[n];
for (int i = 0; i < n; ++i) {
g[i] = new ArrayList<>();
}
for (int[] e : edges) {
int a = e[0], b = e[1];
g[a].add(b);
g[b].add(a);
}
boolean[] vis = new boolean[n];
for (int v : restricted) {
vis[v] = true;
}
Deque<Integer> q = new ArrayDeque<>();
q.offer(0);
int ans = 0;
while (!q.isEmpty()) {
int i = q.pollFirst();
++ans;
vis[i] = true;
for (int j : g[i]) {
if (!vis[j]) {
q.offer(j);
}
}
}
return ans;
}
}
class Solution {
public:
int ans;
int reachableNodes(int n, vector<vector<int>>& edges, vector<int>& restricted) {
vector<vector<int>> g(n);
for (auto& e : edges) {
int a = e[0], b = e[1];
g[a].push_back(b);
g[b].push_back(a);
}
vector<bool> vis(n);
for (int v : restricted) vis[v] = true;
ans = 0;
dfs(0, g, vis);
return ans;
}
void dfs(int u, vector<vector<int>>& g, vector<bool>& vis) {
if (vis[u]) return;
vis[u] = true;
++ans;
for (int v : g[u]) dfs(v, g, vis);
}
};
class Solution {
public:
int reachableNodes(int n, vector<vector<int>>& edges, vector<int>& restricted) {
vector<vector<int>> g(n);
vector<bool> vis(n);
for (auto& e : edges)
{
int a = e[0], b = e[1];
g[a].push_back(b);
g[b].push_back(a);
}
for (int v : restricted) vis[v] = true;
queue<int> q{{0}};
int ans = 0;
while (!q.empty())
{
int i = q.front();
q.pop();
++ans;
vis[i] = true;
for (int j : g[i]) if (!vis[j]) q.push(j);
}
return ans;
}
};
func reachableNodes(n int, edges [][]int, restricted []int) int {
g := make([][]int, n)
for _, e := range edges {
a, b := e[0], e[1]
g[a] = append(g[a], b)
g[b] = append(g[b], a)
}
vis := make([]bool, n)
for _, v := range restricted {
vis[v] = true
}
ans := 0
var dfs func(u int)
dfs = func(u int) {
if vis[u] {
return
}
vis[u] = true
ans++
for _, v := range g[u] {
dfs(v)
}
}
dfs(0)
return ans
}
func reachableNodes(n int, edges [][]int, restricted []int) int {
g := make([][]int, n)
vis := make([]bool, n)
for _, e := range edges {
a, b := e[0], e[1]
g[a] = append(g[a], b)
g[b] = append(g[b], a)
}
for _, v := range restricted {
vis[v] = true
}
q := []int{0}
ans := 0
for len(q) > 0 {
i := q[0]
q = q[1:]
ans++
vis[i] = true
for _, j := range g[i] {
if !vis[j] {
q = append(q, j)
}
}
}
return ans
}
function reachableNodes(
n: number,
edges: number[][],
restricted: number[],
): number {
let res = 0;
const vis = new Array(n).fill(false);
const map = new Map<number, number[]>();
for (const [start, end] of edges) {
map.set(start, [...(map.get(start) ?? []), end]);
map.set(end, [...(map.get(end) ?? []), start]);
}
const dfs = (cur: number) => {
if (restricted.includes(cur) || vis[cur]) {
return;
}
res++;
vis[cur] = true;
for (const item of map.get(cur) ?? []) {
dfs(item);
}
};
dfs(0);
return res;
}
function reachableNodes(
n: number,
edges: number[][],
restricted: number[],
): number {
const g = Array.from({ length: n }, () => []);
const vis = new Array(n).fill(false);
for (const [a, b] of edges) {
g[a].push(b);
g[b].push(a);
}
for (const v of restricted) {
vis[v] = true;
}
const q = [0];
let ans = 0;
while (q.length) {
const i = q.shift();
++ans;
vis[i] = true;
for (const j of g[i]) {
if (!vis[j]) {
q.push(j);
}
}
}
return ans;
}