Given a 0-indexed integer array nums
, return true
if it can be made strictly increasing after removing exactly one element, or false
otherwise. If the array is already strictly increasing, return true
.
The array nums
is strictly increasing if nums[i - 1] < nums[i]
for each index (1 <= i < nums.length).
Example 1:
Input: nums = [1,2,10,5,7] Output: true Explanation: By removing 10 at index 2 from nums, it becomes [1,2,5,7]. [1,2,5,7] is strictly increasing, so return true.
Example 2:
Input: nums = [2,3,1,2] Output: false Explanation: [3,1,2] is the result of removing the element at index 0. [2,1,2] is the result of removing the element at index 1. [2,3,2] is the result of removing the element at index 2. [2,3,1] is the result of removing the element at index 3. No resulting array is strictly increasing, so return false.
Example 3:
Input: nums = [1,1,1] Output: false Explanation: The result of removing any element is [1,1]. [1,1] is not strictly increasing, so return false.
Constraints:
2 <= nums.length <= 1000
1 <= nums[i] <= 1000
class Solution:
def canBeIncreasing(self, nums: List[int]) -> bool:
def check(nums, i):
prev = -inf
for j, num in enumerate(nums):
if i == j:
continue
if prev >= nums[j]:
return False
prev = nums[j]
return True
i, n = 1, len(nums)
while i < n and nums[i - 1] < nums[i]:
i += 1
return check(nums, i - 1) or check(nums, i)
class Solution {
public boolean canBeIncreasing(int[] nums) {
int i = 1, n = nums.length;
for (; i < n && nums[i - 1] < nums[i]; ++i)
;
return check(nums, i - 1) || check(nums, i);
}
private boolean check(int[] nums, int i) {
int prev = Integer.MIN_VALUE;
for (int j = 0; j < nums.length; ++j) {
if (i == j) {
continue;
}
if (prev >= nums[j]) {
return false;
}
prev = nums[j];
}
return true;
}
}
class Solution {
public:
bool canBeIncreasing(vector<int>& nums) {
int i = 1, n = nums.size();
for (; i < n && nums[i - 1] < nums[i]; ++i)
;
return check(nums, i - 1) || check(nums, i);
}
bool check(vector<int>& nums, int i) {
int prev = 0;
for (int j = 0; j < nums.size(); ++j) {
if (i == j) continue;
if (prev >= nums[j]) return false;
prev = nums[j];
}
return true;
}
};
func canBeIncreasing(nums []int) bool {
i, n := 1, len(nums)
for ; i < n && nums[i-1] < nums[i]; i++ {
}
return check(nums, i-1) || check(nums, i)
}
func check(nums []int, i int) bool {
prev := 0
for j := 0; j < len(nums); j++ {
if i == j {
continue
}
if prev >= nums[j] {
return false
}
prev = nums[j]
}
return true
}