Skip to content

Latest commit

 

History

History
110 lines (85 loc) · 2.28 KB

File metadata and controls

110 lines (85 loc) · 2.28 KB

中文文档

Description

Given an integer n, return an array ans of length n + 1 such that for each i (0 <= i <= n), ans[i] is the number of 1's in the binary representation of i.

 

Example 1:

Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10

Example 2:

Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101

 

Constraints:

  • 0 <= n <= 105

 

Follow up:

  • It is very easy to come up with a solution with a runtime of O(n log n). Can you do it in linear time O(n) and possibly in a single pass?
  • Can you do it without using any built-in function (i.e., like __builtin_popcount in C++)?

Solutions

Python3

class Solution:
    def countBits(self, n: int) -> List[int]:
        ans = [0] * (n + 1)
        for i in range(1, n + 1):
            ans[i] = ans[i & (i - 1)] + 1
        return ans

Java

class Solution {
    public int[] countBits(int n) {
        int[] ans = new int[n + 1];
        for (int i = 1; i <= n; ++i) {
            ans[i] = ans[i & (i - 1)] + 1;
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<int> countBits(int n) {
        vector<int> ans(n + 1);
        for (int i = 1; i <= n; ++i) ans[i] = ans[i & (i - 1)] + 1;
        return ans;
    }
};

Go

func countBits(n int) []int {
	ans := make([]int, n+1)
	for i := 1; i <= n; i++ {
		ans[i] = ans[i&(i-1)] + 1
	}
	return ans
}

...