You are given an integer array prices
where prices[i]
is the price of a given stock on the ith
day, and an integer k
.
Find the maximum profit you can achieve. You may complete at most k
transactions.
Note: You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).
Example 1:
Input: k = 2, prices = [2,4,1] Output: 2 Explanation: Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2.
Example 2:
Input: k = 2, prices = [3,2,6,5,0,3] Output: 7 Explanation: Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4. Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Constraints:
1 <= k <= 100
1 <= prices.length <= 1000
0 <= prices[i] <= 1000
Dynamic programming.
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
n = len(prices)
if n < 2:
return 0
dp = [[[0] * 2 for _ in range(k + 1)] for _ in range(n)]
for i in range(1, k + 1):
dp[0][i][1] = -prices[0]
for i in range(1, n):
for j in range(1, k + 1):
dp[i][j][0] = max(dp[i - 1][j][1] + prices[i], dp[i - 1][j][0])
dp[i][j][1] = max(dp[i - 1][j - 1][0] - prices[i], dp[i - 1][j][1])
return dp[-1][k][0]
class Solution {
public int maxProfit(int k, int[] prices) {
int n = prices.length;
if (n <= 1) {
return 0;
}
int[][][] dp = new int[n][k + 1][2];
for (int i = 1; i <= k; ++i) {
dp[0][i][1] = -prices[0];
}
for (int i = 1; i < n; ++i) {
for (int j = 1; j <= k; ++j) {
dp[i][j][0] = Math.max(dp[i - 1][j][1] + prices[i], dp[i - 1][j][0]);
dp[i][j][1] = Math.max(dp[i - 1][j - 1][0] - prices[i], dp[i - 1][j][1]);
}
}
return dp[n - 1][k][0];
}
}
dp[i][0]
Indicates the income after the ith purchase, dp[i][1]
Indicates the income after the ith sell.
State transition equation:
dp[i][0] = max{dp[i][0], dp[i - 1][1] - prices[i]}
dp[i][1] = max{dp[i][1], dp[i][0] + prices[i]}
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
int dp[k + 1][2];
memset(dp, 0, sizeof(dp));
for (int i = 1; i <= k && !prices.empty(); ++i) {
dp[i][0] = -prices[0];
}
for (int i = 1; i < prices.size(); ++i) {
for (int j = 1; j <= k; ++j) {
dp[j][0] = max(dp[j][0], dp[j - 1][1] - prices[i]);
dp[j][1] = max(dp[j][1], dp[j][0] + prices[i]);
}
}
return dp[k][1];
}
};
func maxProfit(k int, prices []int) int {
n := len(prices)
if n < 2 {
return 0
}
dp := make([][][]int, n)
for i := 0; i < n; i++ {
dp[i] = make([][]int, k+1)
for j := 0; j <= k; j++ {
dp[i][j] = make([]int, 2)
}
}
for i := 1; i <= k; i++ {
dp[0][i][1] = -prices[0]
}
for i := 1; i < n; i++ {
for j := 1; j <= k; j++ {
dp[i][j][0] = max(dp[i-1][j][1]+prices[i], dp[i-1][j][0])
dp[i][j][1] = max(dp[i-1][j-1][0]-prices[i], dp[i-1][j][1])
}
}
return dp[n-1][k][0]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}