Skip to content

Latest commit

 

History

History
243 lines (196 loc) · 5.79 KB

File metadata and controls

243 lines (196 loc) · 5.79 KB

English Version

题目描述

给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。

candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。 

对于给定的输入,保证和为 target 的不同组合数少于 150 个。

 

示例 1:

输入:candidates = [2,3,6,7], target = 7
输出:[[2,2,3],[7]]
解释:
2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。
7 也是一个候选, 7 = 7 。
仅有这两种组合。

示例 2:

输入: candidates = [2,3,5], target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]

示例 3:

输入: candidates = [2], target = 1
输出: []

 

提示:

  • 1 <= candidates.length <= 30
  • 2 <= candidates[i] <= 40
  • candidates 的所有元素 互不相同
  • 1 <= target <= 40

解法

DFS。

为了避免重复方案,需要定义一个搜索起点。

Python3

class Solution:
    def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
        def dfs(s, u, t):
            if s == target:
                ans.append(t[:])
                return
            if s > target:
                return
            for i in range(u, len(candidates)):
                c = candidates[i]
                t.append(c)
                dfs(s + c, i, t)
                t.pop()

        ans = []
        dfs(0, 0, [])
        return ans

Java

class Solution {
    private List<List<Integer>> ans;
    private int target;
    private int[] candidates;

    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        ans = new ArrayList<>();
        this.target = target;
        this.candidates = candidates;
        dfs(0, 0, new ArrayList<>());
        return ans;
    }

    private void dfs(int s, int u, List<Integer> t) {
        if (s == target) {
            ans.add(new ArrayList<>(t));
            return;
        }
        if (s > target) {
            return;
        }
        for (int i = u; i < candidates.length; ++i) {
            int c = candidates[i];
            t.add(c);
            dfs(s + c, i, t);
            t.remove(t.size() - 1);
        }
    }
}

C++

class Solution {
public:
    vector<vector<int>> ans;
    vector<int> candidates;
    int target;

    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        this->candidates = candidates;
        this->target = target;
        vector<int> t;
        dfs(0, 0, t);
        return ans;
    }

    void dfs(int s, int u, vector<int>& t) {
        if (s == target) {
            ans.push_back(t);
            return;
        }
        if (s > target) return;
        for (int i = u; i < candidates.size(); ++i) {
            int c = candidates[i];
            t.push_back(c);
            dfs(s + c, i, t);
            t.pop_back();
        }
    }
};

Go

func combinationSum(candidates []int, target int) [][]int {
	var ans [][]int

	var dfs func(s, u int, t []int)
	dfs = func(s, u int, t []int) {
		if s == target {
			ans = append(ans, append([]int(nil), t...))
			return
		}
		if s > target {
			return
		}
		for i := u; i < len(candidates); i++ {
			c := candidates[i]
			t = append(t, c)
			dfs(s+c, i, t)
			t = t[:len(t)-1]
		}
	}

	var t []int
	dfs(0, 0, t)
	return ans
}

TypeScript

function combinationSum(candidates: number[], target: number): number[][] {
    const n = candidates.length;
    const t: number[] = [];
    const res: number[][] = [];
    const dfs = (i: number, sum: number) => {
        if (sum > target) {
            return;
        }
        if (sum === target) {
            res.push([...t]);
            return;
        }
        for (let j = i; j < n; j++) {
            t.push(candidates[j]);
            dfs(j, sum + candidates[j]);
            t.pop();
        }
    };
    dfs(0, 0);
    return res;
}

Rust

impl Solution {
    fn dfs(i: usize, count: i32, candidates: &Vec<i32>, t: &mut Vec<i32>, res: &mut Vec<Vec<i32>>) {
        if count < 0 {
            return;
        }
        if count == 0 {
            res.push(t.clone());
            return;
        }
        for j in i..candidates.len() {
            let num = candidates[j];
            t.push(num);
            Self::dfs(j, count - num, candidates, t, res);
            t.pop();
        }
    }

    pub fn combination_count(candidates: Vec<i32>, target: i32) -> Vec<Vec<i32>> {
        let mut res = Vec::new();
        Self::dfs(0, target, &candidates, &mut vec![], &mut res);
        res
    }
}

...