Given an array of distinct integers candidates
and a target integer target
, return a list of all unique combinations of candidates
where the chosen numbers sum to target
. You may return the combinations in any order.
The same number may be chosen from candidates
an unlimited number of times. Two combinations are unique if the frequency of at least one of the chosen numbers is different.
The test cases are generated such that the number of unique combinations that sum up to target
is less than 150
combinations for the given input.
Example 1:
Input: candidates = [2,3,6,7], target = 7 Output: [[2,2,3],[7]] Explanation: 2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times. 7 is a candidate, and 7 = 7. These are the only two combinations.
Example 2:
Input: candidates = [2,3,5], target = 8 Output: [[2,2,2,2],[2,3,3],[3,5]]
Example 3:
Input: candidates = [2], target = 1 Output: []
Constraints:
1 <= candidates.length <= 30
2 <= candidates[i] <= 40
- All elements of
candidates
are distinct. 1 <= target <= 40
DFS.
class Solution:
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
def dfs(s, u, t):
if s == target:
ans.append(t[:])
return
if s > target:
return
for i in range(u, len(candidates)):
c = candidates[i]
t.append(c)
dfs(s + c, i, t)
t.pop()
ans = []
dfs(0, 0, [])
return ans
class Solution {
private List<List<Integer>> ans;
private int target;
private int[] candidates;
public List<List<Integer>> combinationSum(int[] candidates, int target) {
ans = new ArrayList<>();
this.target = target;
this.candidates = candidates;
dfs(0, 0, new ArrayList<>());
return ans;
}
private void dfs(int s, int u, List<Integer> t) {
if (s == target) {
ans.add(new ArrayList<>(t));
return;
}
if (s > target) {
return;
}
for (int i = u; i < candidates.length; ++i) {
int c = candidates[i];
t.add(c);
dfs(s + c, i, t);
t.remove(t.size() - 1);
}
}
}
class Solution {
public:
vector<vector<int>> ans;
vector<int> candidates;
int target;
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
this->candidates = candidates;
this->target = target;
vector<int> t;
dfs(0, 0, t);
return ans;
}
void dfs(int s, int u, vector<int>& t) {
if (s == target) {
ans.push_back(t);
return;
}
if (s > target) return;
for (int i = u; i < candidates.size(); ++i) {
int c = candidates[i];
t.push_back(c);
dfs(s + c, i, t);
t.pop_back();
}
}
};
func combinationSum(candidates []int, target int) [][]int {
var ans [][]int
var dfs func(s, u int, t []int)
dfs = func(s, u int, t []int) {
if s == target {
ans = append(ans, append([]int(nil), t...))
return
}
if s > target {
return
}
for i := u; i < len(candidates); i++ {
c := candidates[i]
t = append(t, c)
dfs(s+c, i, t)
t = t[:len(t)-1]
}
}
var t []int
dfs(0, 0, t)
return ans
}
function combinationSum(candidates: number[], target: number): number[][] {
const n = candidates.length;
const t: number[] = [];
const res: number[][] = [];
const dfs = (i: number, sum: number) => {
if (sum > target) {
return;
}
if (sum === target) {
res.push([...t]);
return;
}
for (let j = i; j < n; j++) {
t.push(candidates[j]);
dfs(j, sum + candidates[j]);
t.pop();
}
};
dfs(0, 0);
return res;
}
impl Solution {
fn dfs(i: usize, count: i32, candidates: &Vec<i32>, t: &mut Vec<i32>, res: &mut Vec<Vec<i32>>) {
if count < 0 {
return;
}
if count == 0 {
res.push(t.clone());
return;
}
for j in i..candidates.len() {
let num = candidates[j];
t.push(num);
Self::dfs(j, count - num, candidates, t, res);
t.pop();
}
}
pub fn combination_count(candidates: Vec<i32>, target: i32) -> Vec<Vec<i32>> {
let mut res = Vec::new();
Self::dfs(0, target, &candidates, &mut vec![], &mut res);
res
}
}