-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit b5e90ae
Showing
2 changed files
with
273 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,265 @@ | ||
# Testing: 131059513 Composite | ||
|
||
import numpy as np | ||
import sympy as sp | ||
|
||
|
||
# Tonelli's Equation: https://en.wikipedia.org/w/index.php?title=Tonelli%E2%80%93Shanks_algorithm&oldid=1014170710#Tonelli%27s_algorithm_will_work_on_mod_p%5Ek | ||
def tonelli_equation(n: int, p: int, r: int, i: int): | ||
prime = p**i | ||
tmp = p**(i-1) | ||
r = pow(r, tmp, prime) | ||
c = pow(n, (prime - 2*(tmp) + 1) // 2, prime) | ||
return (r*c) % prime | ||
|
||
|
||
# Euler's criterion: https://en.wikipedia.org/wiki/Euler's_criterion | ||
def is_quadratic_residue(n: int, p: int): | ||
d = pow(n, (p-1)//2, p) | ||
|
||
if d == 0 or d == 1: | ||
return True | ||
else: | ||
return False | ||
|
||
# Tonelli-Shanks algorithm for computing solutions to a^2 = n (mod p): https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm#The_algorithm | ||
def tonelli_shanks(n: int, p: int): | ||
if n % p == 0: | ||
return 0 | ||
|
||
if p == 2: | ||
return 1 # Because n = 1 (mod p) and 1 raised to any power is still equal to 1. | ||
|
||
# From here it is assumed that n is a quadratic residue mod p, since we filtered before with Euler's criterion | ||
assert(is_quadratic_residue(n,p)) | ||
|
||
# if p % 4 == 3 we can solve directly: (https://asfdfsaf.github.io/js-latex/index.html?ml=false&tex=\text{if } p \equiv 3 \pmod{4}%2C%0Aa^2 \equiv n \pmod{p} \Rightarrow a %3D n^{(p%2B1)%2F4} \bmod p%20) | ||
if p % 4 == 3: | ||
R = pow(n, (p+1)//4, p) | ||
#print(f"Found R={R}\n") | ||
return R | ||
|
||
Q = p-1 | ||
S = 0 | ||
|
||
S = (Q & -Q).bit_length() - 1 | ||
Q >>= S | ||
|
||
z = 2 | ||
while is_quadratic_residue(z,p): | ||
z += 1 | ||
|
||
#print (f"z={z}") | ||
|
||
M = S | ||
c = pow(z, Q, p) # non-residue | ||
t = pow(n, Q, p) # residue | ||
R = pow(n, (Q+1)//2, p) # R = n^(Q+1)/2 mod p | ||
|
||
#print (f"M={M}, c={c}, t={t}, R={R}") | ||
|
||
while t != 1: | ||
i = 0 | ||
tmp = t | ||
while tmp != 1: | ||
i += 1 | ||
tmp = pow(tmp, 2, p) | ||
|
||
b = pow(c, 2**(M-i-1), p) | ||
|
||
M = i | ||
c = pow(b, 2, p) | ||
t = (t * c) % p | ||
R = (R*b) % p | ||
|
||
#print(f"i={i}, b={b}, M={M}, c={c}, t={t}, R={R}") | ||
|
||
#print(f"Found R={R}\n") | ||
return R | ||
|
||
# Quadratic Sieve: https://en.wikipedia.org/wiki/Quadratic_sieve | ||
def qs(n): | ||
|
||
prime_table = np.array([3, 5, 7, 11, 13, 17, 19, 23, 29, | ||
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, | ||
73, 79, 83, 89, 97, 101, 103, 107, 109, 113, | ||
127, 131, 137, 139, 149, 151, 157, 163, 167, 173, | ||
179, 181, 191, 193, 197, 199, 211, 223, 227, 229, | ||
233, 239, 241, 251, 257, 263, 269, 271, 277, 281, | ||
283, 293, 307, 311, 313, 317, 331, 337, 347, 349, | ||
353, 359, 367, 373, 379, 383, 389, 397, 401, 409, | ||
419, 421, 431, 433, 439, 443, 449, 457, 461, 463, | ||
467, 479, 487, 491, 499, 503, 509, 521, 523, 541, | ||
547, 557, 563, 569, 571, 577, 587, 593, 599, 601, | ||
607, 613, 617, 619, 631, 641, 643, 647, 653, 659, | ||
661, 673, 677, 683, 691, 701, 709, 719, 727, 733, | ||
739, 743, 751, 757, 761, 769, 773, 787, 797, 809, | ||
811, 821, 823, 827, 829, 839, 853, 857, 859, 863, | ||
877, 881, 883, 887, 907, 911, 919, 929, 937, 941, | ||
947, 953, 967, 971, 977, 983, 991, 997]) | ||
''' | ||
# Smoothness bound B chosen with this heuristic: | ||
B = min(int(np.floor(np.exp(0.5 * np.sqrt(np.log(n) * np.log(np.log(n)))))), prime_table.size) | ||
print(B) | ||
''' | ||
|
||
factor_base = prime_table | ||
|
||
print(f"bounded_primes={factor_base}\n") | ||
|
||
filter = np.zeros(factor_base.size, dtype=np.int8) | ||
|
||
for i in range(0, factor_base.size): | ||
p = factor_base[i] | ||
|
||
if is_quadratic_residue(n,int(p)): | ||
filter[i] = 1 | ||
|
||
# Applying filter | ||
factor_base = np.array([i for i,j in zip(factor_base,filter) if j == 1]) | ||
|
||
print(f"factor_base={factor_base}\n") | ||
|
||
smooth_values_count = 0 | ||
smooth_values = np.empty(factor_base.size+1, dtype=np.int64) | ||
smooth_exponents = np.empty((factor_base.size+1, factor_base.size), dtype=np.int8) | ||
|
||
values = np.zeros((factor_base.size*30, 1), dtype=np.int64) | ||
|
||
# Calculate all base roots pre-emptevely | ||
roots = np.empty(factor_base.size, np.int64) | ||
for i in range(0, factor_base.size): | ||
roots[i] = tonelli_shanks(n, int(factor_base[i])) | ||
|
||
if roots[i] == 0: # Found the factor | ||
return factor_base[i], n // factor_base[i] | ||
|
||
print(f"roots={roots}\n") | ||
|
||
base_sqrt = int(np.ceil(np.sqrt(n))) | ||
|
||
# (sqrt(n) + i)^2 - n | ||
for i in range(0, factor_base.size*30): | ||
values[i] = np.power(base_sqrt + i, 2) - n | ||
|
||
tmp_values = np.copy(values) | ||
tmp_exponents = np.zeros((factor_base.size*30, factor_base.size), dtype=np.int8) | ||
|
||
sieve = 1 | ||
while smooth_values_count < factor_base.size+1: | ||
|
||
# Solve (sqrt(n) + i)^2 = n (mod p) for at least π(B)+1 values | ||
for p in range(0, factor_base.size): | ||
|
||
if smooth_values_count >= factor_base.size+1: | ||
break | ||
|
||
prime = factor_base[p] ** sieve | ||
|
||
R0 = tonelli_equation(n, int(factor_base[p]), int(roots[p]), sieve) # for finding R^2 = n (mod p^sieve) | ||
|
||
R1 = -R0 % prime | ||
|
||
print("R0={}, R1={}, n={}, p={}, base_sqrt={}".format(R0, R1, n, prime, base_sqrt)) | ||
|
||
R0 = (R0 - base_sqrt) % prime | ||
R1 = (R1 - base_sqrt) % prime | ||
|
||
|
||
# Divide values[R0 + kp] by p for k = 0, 1, 2, ... | ||
for j in range(R0, tmp_values.size, prime): | ||
|
||
if smooth_values_count >= factor_base.size+1: | ||
break | ||
|
||
print(f"j={j}, values_factor[j]={tmp_values[j]}, prime={prime}") | ||
assert tmp_values[j] % factor_base[p] == 0 | ||
tmp_values[j] //= factor_base[p] | ||
|
||
# Record factor in the exponents matrix mod 2 | ||
tmp_exponents[j,p] += 1 | ||
|
||
if tmp_values[j] == 1: | ||
print("FOUND A SMOOTH VALUE: {}".format(values[j])) | ||
smooth_values[smooth_values_count] = values[j] | ||
smooth_exponents[smooth_values_count, :] = tmp_exponents[j, :] | ||
smooth_values_count += 1 | ||
|
||
if R0 != R1: | ||
for j in range(R1, tmp_values.size, prime): | ||
|
||
if smooth_values_count >= factor_base.size+1: | ||
break | ||
|
||
print(f"j={j}, values_factor[j]={tmp_values[j]}, prime={prime}") | ||
assert tmp_values[j] % factor_base[p] == 0 | ||
|
||
tmp_values[j] //= factor_base[p] | ||
|
||
# Record factor in the exponents matrix | ||
tmp_exponents[j,p] += 1 | ||
|
||
if tmp_values[j] == 1: | ||
print("FOUND A SMOOTH VALUE: {}".format(values[j])) | ||
smooth_values[smooth_values_count] = values[j] | ||
smooth_exponents[smooth_values_count, :] = tmp_exponents[j, :] | ||
smooth_values_count += 1 | ||
|
||
print(f"END OF SIEVE {sieve}\n") | ||
sieve += 1 | ||
|
||
print(smooth_values) | ||
|
||
print(f"Found {smooth_values_count} smooth values!\n") | ||
|
||
# Compute a vector of the kernel of the exponents matrix mod 2 | ||
smooth_exponents_mod2 = smooth_exponents % 2 | ||
nullspace = sp.Matrix(smooth_exponents_mod2.T).nullspace() | ||
print(f"nullspace.len={len(nullspace)}") | ||
|
||
r = None | ||
q = None | ||
|
||
for k in range(0, len(nullspace)): | ||
# Finding kernel mod 2 | ||
nullcolumn = nullspace[k] | ||
denominators = [fraction.denominator for fraction in nullcolumn] | ||
lcm = np.lcm.reduce(denominators) | ||
nullcolumn *= lcm | ||
nullcolumn %= 2 | ||
nullcolumn = np.array([x for x in nullcolumn]) | ||
print(f"nullcolumn={nullcolumn}\n") | ||
|
||
a = 1 | ||
final_exponents = np.zeros(factor_base.size, dtype=np.int64) | ||
|
||
for i in range(0, len(nullcolumn)): | ||
if nullcolumn[i] == 1: | ||
|
||
a = (a * int(np.sqrt( smooth_values[i] + n ))) % n | ||
|
||
for j in range(0, len(factor_base)): | ||
final_exponents[j] += smooth_exponents[i,j] | ||
|
||
|
||
print(f"final_exponents={final_exponents}\n") | ||
|
||
b = 1 | ||
for p,f in zip(factor_base, final_exponents): | ||
b = (b * (p ** (f>>1))) % n | ||
|
||
print(f"a = {a}, b = {b}\n") | ||
r = np.gcd(a-b, n) | ||
print(f"gcd(a-b, n) = {r}") | ||
|
||
if r != 1 and r != n: | ||
q = n//r | ||
break | ||
|
||
return r, q | ||
|
||
|
||
r,q = qs(int(input("Insert a composite number to find the factors of: "))) | ||
|
||
print(f"r={r}, q={q}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
# Quadratic Sieve Factorization | ||
|
||
Guides: | ||
- Detailed Guide on QS: https://medium.com/nerd-for-tech/heres-how-quadratic-sieve-factorization-works-1c878bc94f81 | ||
- Wikipedia Article: https://en.wikipedia.org/wiki/Quadratic_sieve | ||
- Euler's Criterion for pre-emptevely determining if $ \exists a \text{such that } a^2 \equiv n \mod{p} $: https://en.wikipedia.org/wiki/Euler%27s_criterion | ||
- Tonelli shanks for finding quadratic residues (and Tonelli equation): https://en.wikipedia.org/w/index.php?title=Tonelli%E2%80%93Shanks_algorithm&oldid=1014170710#Tonelli%27s_algorithm_will_work_on_mod_p%5Ek | ||
- Block Wiedemann wikipedia article for computing the nullspace of a matrix (not implemented): https://en.wikipedia.org/wiki/Block_Wiedemann_algorithm |