Skip to content

Commit

Permalink
switch to using math mode instead of 32681
Browse files Browse the repository at this point in the history
  • Loading branch information
henrygerardmoore committed Nov 1, 2024
1 parent aa0d18a commit 6012ea5
Showing 1 changed file with 16 additions and 6 deletions.
22 changes: 16 additions & 6 deletions doc/Constraints.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,9 @@ documentation is highly recommended.

The nonlinear least-squares system used by the Ceres Solver is written as:

$$ \mathrm{arg\ min}_{x} \left(\frac{1}{2} \sum_i \rho_i \left(||f(x_{i_1},...,x_{i_k})||^2\right)\right)$$
```math
\mathrm{arg\ min}_{x} \left(\frac{1}{2} \sum_i \rho_i \left(||f(x_{i_1},...,x_{i_k})||^2\right)\right)
```

In Ceres Solver parlance, ρ() is called a "loss function". f() is called a "cost function", which accepts one or
more inputs, x. And the inputs, x, are called "parameter blocks". The "parameter blocks" themselves may be
Expand Down Expand Up @@ -43,7 +45,9 @@ The "cost function" is the main component of the Constraint object. It is respon
minimized by the Ceres Solver optimizer. The cost function must implement some sort of equation to generate a score
for arbitrary input values. In its most generic form, that equation is written simply as:

$$ \begin{bmatrix} r_1 \\ ... \\ r_i\end{bmatrix} = f\left(\begin{bmatrix}x_{1_1} \\ ... \\ x_{1_j}\end{bmatrix}, ..., \begin{bmatrix}x_{n_1} \\ ... \\ x_{n_k}\end{bmatrix}\right)$$
```math
\begin{bmatrix} r_1 \\ ... \\ r_i\end{bmatrix} = f\left(\begin{bmatrix}x_{1_1} \\ ... \\ x_{1_j}\end{bmatrix}, ..., \begin{bmatrix}x_{n_1} \\ ... \\ x_{n_k}\end{bmatrix}\right)
```


where f() is the cost function, x<sub>1</sub> through x<sub>n</sub> are the input Variables, each of which may contain
Expand All @@ -59,7 +63,9 @@ An observation model, sometimes called a sensor model, predicts a sensor measure
of the system Variables. The cost is then computed as the difference between the predicted sensor measurement and the
actual sensor measurement, normalized by the measurement uncertainty.

$$ \begin{bmatrix} r_1 \\ ... \\ r_i\end{bmatrix} = \left(\begin{bmatrix}z_1 \\ ... \\ z_i\end{bmatrix} - h\left(\begin{bmatrix}x_{1_1} \\ ... \\ x_{1_j}\end{bmatrix}, ..., \begin{bmatrix}x_{n_1} \\ ... \\ x_{n_k}\end{bmatrix}\right)\right) \cdot \Sigma ^{-\frac{1}{2}}$$
```math
\begin{bmatrix} r_1 \\ ... \\ r_i\end{bmatrix} = \left(\begin{bmatrix}z_1 \\ ... \\ z_i\end{bmatrix} - h\left(\begin{bmatrix}x_{1_1} \\ ... \\ x_{1_j}\end{bmatrix}, ..., \begin{bmatrix}x_{n_1} \\ ... \\ x_{n_k}\end{bmatrix}\right)\right) \cdot \Sigma ^{-\frac{1}{2}}
```

where z is the sensor measured, h() is the sensor prediction function, and &Sigma; is the covariance matrix. Within
the least-squares minimization, the entire cost function will get squared. By dividing by the square root of the
Expand All @@ -73,7 +79,9 @@ A state transition model, sometimes called a motion model, predicts the value of
current estimates of the system Variables. This is generally used to enforce a physical model of the system, such
as known vehicle kinematics.

$$ \begin{bmatrix} r_1 \\ ... \\ r_i\end{bmatrix} = \left(\begin{bmatrix}x_{t_1} \\ ... \\ x_{t_i}\end{bmatrix} - f\left(\begin{bmatrix}x_{{t-1}_1} \\ ... \\ x_{{t-1}_i}\end{bmatrix}\right)\right) \cdot \Sigma ^{-\frac{1}{2}}$$
```math
\begin{bmatrix} r_1 \\ ... \\ r_i\end{bmatrix} = \left(\begin{bmatrix}x_{t_1} \\ ... \\ x_{t_i}\end{bmatrix} - f\left(\begin{bmatrix}x_{{t-1}_1} \\ ... \\ x_{{t-1}_i}\end{bmatrix}\right)\right) \cdot \Sigma ^{-\frac{1}{2}}
```

where x<sub>t</sub> is the current Variable estimate for time _t_, x<sub>t-1</sub> is the current Variable estimate
for time _t-1_, f() is the state prediction function that implements the desired kinematic or dynamic model
Expand Down Expand Up @@ -246,10 +254,12 @@ modeled this way. Our cost function will follow the "observation model", where t
predict the sensor measurement, and the cost will be the different between the measured and the prediction normalized
by the measurement uncertainty.
$$ \begin{bmatrix} \mathrm{cost}_1 \\ \mathrm{cost}_2 \\ \mathrm{cost}_3\end{bmatrix}
```math
\begin{bmatrix} \mathrm{cost}_1 \\ \mathrm{cost}_2 \\ \mathrm{cost}_3\end{bmatrix}
= \left(\begin{bmatrix}z_x \\ z_y \\ z_{yaw}\end{bmatrix}
- \begin{bmatrix}position_x \\ position_y \\ orientation_{yaw}\end{bmatrix}\right)
\cdot \Sigma ^{-\frac{1}{2}}$$
\cdot \Sigma ^{-\frac{1}{2}}
```

We will make use of Ceres Solver's automatic derivative system to compute the Jacobians. For that to work, we must
implement the cost function equation as a functor object (has an `operator()` method). To compute the cost, our
Expand Down

0 comments on commit 6012ea5

Please sign in to comment.