-
Notifications
You must be signed in to change notification settings - Fork 28
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
112 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
import tensorflow as tf | ||
import tensorflow_quantum as tfq | ||
import cirq | ||
import sympy | ||
import openfermion as of | ||
from openfermionpyscf import generate_molecular_hamiltonian | ||
from scipy.sparse import linalg | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
def layer(circuit, qubits, parameters): | ||
for i in range(len(qubits)): | ||
circuit += cirq.ry(parameters[3*i]).on(qubits[i]) | ||
circuit += cirq.rz(parameters[3*i+1]).on(qubits[i]) | ||
circuit += cirq.ry(parameters[3*i+2]).on(qubits[i]) | ||
for i in range(len(qubits)-1): | ||
circuit += cirq.CNOT(qubits[i], qubits[i+1]) | ||
circuit += cirq.CNOT(qubits[-1], qubits[0]) | ||
return circuit | ||
|
||
def ansatz(circuit, qubits, layers, parameters): | ||
for i in range(layers): | ||
params = parameters[3 * i * len(qubits):3 * (i + 1) * len(qubits)] | ||
circuit = layer(circuit, qubits, params) | ||
return circuit | ||
|
||
def make_vqe(qubits, layers, hamiltonian): | ||
num_params = layers * 3 * len(qubits) | ||
params = sympy.symbols('vqe0:%d'%num_params) | ||
c = ansatz(cirq.Circuit(), qubits, layers, params) | ||
ins = tf.keras.layers.Input(shape=(), dtype=tf.dtypes.string) | ||
pqc = tfq.layers.PQC(c, hamiltonian, differentiator=tfq.differentiators.Adjoint())(ins) | ||
vqe = tf.keras.models.Model(inputs=ins, outputs=pqc) | ||
return vqe | ||
|
||
def make_vqe_noisy(qubits, layers, hamiltonian): | ||
num_params = layers * 3 * len(qubits) | ||
params = sympy.symbols('vqe0:%d'%num_params) | ||
c = ansatz(cirq.Circuit(), qubits, layers, params) | ||
c = c.with_noise(cirq.depolarize(p=0.01)) | ||
ins = tf.keras.layers.Input(shape=(), dtype=tf.dtypes.string) | ||
pqc = tfq.layers.NoisyPQC(c, hamiltonian, repetitions=1000, sample_based=True, differentiator=tfq.differentiators.ParameterShift())(ins) | ||
vqe = tf.keras.models.Model(inputs=ins, outputs=pqc) | ||
return vqe | ||
|
||
def optimize_vqe_gradient(vqe, init): | ||
old = np.inf | ||
inputs = tfq.convert_to_tensor([cirq.Circuit()]) | ||
counter = 0 | ||
vqe.set_weights([init]) | ||
opt = tf.keras.optimizers.Adam(learning_rate=0.1) # Empirically justified (Lockwood, 2022) | ||
energy = 0 | ||
while counter < 200: | ||
with tf.GradientTape() as tape: | ||
guess = vqe(inputs) | ||
grads = tape.gradient(guess, vqe.trainable_variables) | ||
opt.apply_gradients(zip(grads, vqe.trainable_variables)) | ||
guess = guess.numpy()[0][0] | ||
energy = guess | ||
if abs(guess - old) < 1e-5: | ||
break | ||
old = guess | ||
counter += 1 | ||
|
||
return energy | ||
|
||
diatomic_bond_length = 0.2 | ||
interval = 0.1 | ||
max_bond_length = 4.0 | ||
basis = 'sto-3g' | ||
multiplicity = 1 | ||
charge = 0 | ||
ground_energies_real = [] | ||
ground_energies_vqe = [] | ||
ground_energies_vqe_noisy = [] | ||
bond_lengths = [] | ||
k = 2 | ||
|
||
# VQE Hyperparameters | ||
layers = 2 | ||
|
||
while diatomic_bond_length <= max_bond_length: | ||
print(diatomic_bond_length, max_bond_length) | ||
geometry = [('H', (0., 0., 0.)), ('H', (0., 0., diatomic_bond_length))] | ||
molecular_hamiltonian = generate_molecular_hamiltonian(geometry, basis, multiplicity, charge) | ||
n_qubits = of.count_qubits(molecular_hamiltonian) | ||
qs = [cirq.GridQubit(0, i) for i in range(n_qubits)] | ||
jw_operator = of.transforms.jordan_wigner(molecular_hamiltonian) | ||
hamiltonian_jw_sparse = of.get_sparse_operator(jw_operator) | ||
eigs, _ = linalg.eigsh(hamiltonian_jw_sparse, k=k, which='SA') | ||
hamiltonian = of.transforms.qubit_operator_to_pauli_sum(jw_operator, qubits=qs) | ||
|
||
vqe = make_vqe(qs, layers, hamiltonian) | ||
vqe_noisy = make_vqe_noisy(qs, layers, hamiltonian) | ||
initial_value = tf.random.uniform(shape=[layers * 3 * n_qubits], minval=0, maxval=2 * np.pi) | ||
ground_gradient = optimize_vqe_gradient(vqe, initial_value) | ||
ground_gradient_noisy = optimize_vqe_gradient(vqe_noisy, initial_value) | ||
ground_energies_vqe.append(ground_gradient) | ||
ground_energies_vqe_noisy.append(ground_gradient_noisy) | ||
ground_energies_real.append(eigs[0]) | ||
bond_lengths.append(diatomic_bond_length) | ||
|
||
diatomic_bond_length += interval | ||
|
||
|
||
plt.scatter(bond_lengths, ground_energies_vqe, label='VQE Predicted Ground State', marker='o', facecolors="None", edgecolor='blue') | ||
plt.scatter(bond_lengths, ground_energies_vqe_noisy, label='Noisy VQE Predicted Ground State', marker='s', facecolors="None", edgecolor='red') | ||
plt.plot(bond_lengths, ground_energies_real, label='Ground State', color='blue') | ||
plt.xlabel("Interatomic Distance (Angstroms)") | ||
plt.ylabel("Energy (Hartree)") | ||
plt.legend() | ||
plt.show() |