Skip to content
/ rl-book Public
forked from ZhiqingXiao/rl-book

Source codes for the book "Reinforcement Learning: Theory and Python Implementation"

Notifications You must be signed in to change notification settings

lml519/rl-book

 
 

Repository files navigation

强化学习:原理与Python实现

世界上第一本配套 TensorFlow 2 代码的强化学习教程书

中国第一本配套 TensorFlow 2 代码的纸质算法书

Book

本书介绍强化学习理论及其 Python 实现。

  • 理论完备:全书用一套完整的数学体系,严谨地讲授强化学习的理论基础,主要定理均给出证明过程。各章内容循序渐进,覆盖了所有主流强化学习算法,包括资格迹等非深度强化学习算法和柔性执行者/评论者等深度强化学习算法。
  • 案例丰富:在您最爱的操作系统(包括 Windows、macOS、Linux)上,基于最新的 Python 3.7、Gym 0.17 和 TensorFlow 2.1(兼容 TensorFlow 1.15),实现强化学习算法。全书实现统一规范,体积小、重量轻。第 1~9 章给出了算法的配套实现,环境部分只依赖于 Gym 的最小安装,在没有 GPU 的计算机上也可运行;第 10~12 章介绍了多个热门综合案例,涵盖 Gym 的完整安装和自定义扩展,在有普通 GPU 的计算机上即可运行。

目录

  1. 初识强化学习   查看代码:useGym
  2. Markov决策过程   查看代码:useBellman CliffWalking
  3. 有模型数值迭代   查看代码:FrozenLake
  4. 回合更新价值迭代   查看代码:Blackjack
  5. 时序差分价值迭代   查看代码:Taxi
  6. 函数近似方法   查看代码:MountainCar
  7. 回合更新策略梯度方法   查看代码:CartPole
  8. 执行者/评论者方法   查看代码:Acrobot
  9. 连续动作空间的确定性策略   查看代码:Pendulum
  10. 综合案例:电动游戏   查看代码:Breakout Pong Seaquest
  11. 综合案例:棋盘游戏   查看代码:TicTacToe Reversi
  12. 综合案例:自动驾驶   查看代码:AirSimNH

QQ群

  • 群号:935702193 (免费入群)
  • 关于入群验证问题:由于QQ的bug,即使正确输入答案,也可能会验证失败。这时更换设备重试、更换输入法重试、改日重试均可能解决问题。如果答案中有英文字母,清注意大小写。人名的首字母应大写。

书籍勘误与更新

判断纸质版书籍版次的方法 / 确定纸质书印刷时间的方法

  • “前言”之前有1页是“图书在版编目(CIP)数据”。这页下部的表格中有一项是“版次”,该项标明当前书是什么时候第几次印刷的。

本书数学符号表

本书电子版

本书不仅有纸质版销售,也有电子版销售。不过,电子版没有提供配套的勘误与更新资源,所以推荐购买纸质版。电子版销售平台包括但不限于:

Reinforcement Learning: Theory and Python Implementation

The First Reinforcement Learning Tutorial Book with TensorFlow 2 Implementation

This is a tutorial book on reinforcement learning, with explanation of theory and Python implementation.

  • Theory: Starting from a uniform mathematical framework, this book derives the theory and algorithms of reinforcement learning, including all major algorithms such as eligibility traces and soft actor-critic algorithms.
  • Practice: Every chapter is accompanied by high quality implementation based on Python 3.7, Gym 0.17, and TensorFlow 2.1.

Table of Contents

  1. Introduction of Reinforcement Learning
  2. Markov Decision Process
  3. Model-based Numeric Iteration
  4. Monte-Carlo Learning
  5. Temporal Difference Learning
  6. Function Approximation
  7. Policy Gradient
  8. Actor-Critic
  9. Deterministic Policy Gradient
  10. Case Study: Video Game
  11. Case Study: Board Game
  12. Case Study: Self-Driving Car

BibTeX

@book{xiao2019,
 title     = {Reinforcement Learning: Theory and {Python} Implementation},
 author    = {Zhiqing Xiao}
 year      = 2019,
 month     = 8,
 publisher = {China Machine Press},
}

About

Source codes for the book "Reinforcement Learning: Theory and Python Implementation"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%