forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Speculative decoding 1/9] Optimized rejection sampler (vllm-project#…
- Loading branch information
1 parent
74cd5ab
commit 79d64c4
Showing
2 changed files
with
784 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,392 @@ | ||
"""Tests for rejection sampling.""" | ||
import pytest | ||
from typing import List, Tuple | ||
|
||
import torch | ||
import torch.nn.functional as F | ||
|
||
from vllm.model_executor.utils import set_random_seed | ||
|
||
from vllm.model_executor.layers.rejection_sampler import RejectionSampler | ||
|
||
|
||
def mock_causal_accepted_tensor( | ||
k: int, last_accepted_indices: torch.Tensor) -> torch.Tensor: | ||
"""Generate an "accepted" tensor which should yield causally-accepted tokens | ||
up to last accepted indices. | ||
Tokens after last_accepted_indices+1 may also be accepted, although they | ||
will not be causally accepted. | ||
""" | ||
batch_size = last_accepted_indices.shape[0] | ||
|
||
accepted = (torch.arange(k).expand(batch_size, k) <= | ||
last_accepted_indices.unsqueeze(-1).broadcast_to( | ||
batch_size, k)).to(device="cuda") | ||
|
||
# Sprinkle accepted values after the contiguous initial accepted values. | ||
# This replicates the behavior of rejection sampling, which may "accept" | ||
# a token that cannot be accepted because of causality. | ||
sprinkle_candidates = ( | ||
torch.arange(k).expand(batch_size, k) > | ||
last_accepted_indices.unsqueeze(-1).broadcast_to(batch_size, k) + 1) | ||
sprinkle = torch.rand(batch_size, k, device="cuda") > 0.5 | ||
accepted[sprinkle_candidates] = sprinkle[sprinkle_candidates] | ||
return accepted | ||
|
||
|
||
@pytest.mark.parametrize("seed", list(range(10))) | ||
@pytest.mark.parametrize( | ||
"which_tokens_accepted", | ||
["all_tokens_accepted", "no_tokens_accepted", "some_tokens_accepted"]) | ||
@torch.inference_mode() | ||
def test_correct_output_format(which_tokens_accepted: str, seed: int): | ||
"""Verify the output has correct format given predetermined accepted matrix. | ||
""" | ||
set_random_seed(seed) | ||
|
||
batch_size = 10 | ||
k = 5 | ||
vocab_size = 3000 | ||
|
||
if which_tokens_accepted == "all_tokens_accepted": | ||
accepted = mock_causal_accepted_tensor( | ||
k, -1 + k * torch.ones((batch_size, ), dtype=torch.long)) | ||
elif which_tokens_accepted == "no_tokens_accepted": | ||
accepted = mock_causal_accepted_tensor( | ||
k, -torch.ones((batch_size, ), dtype=torch.long)) | ||
elif which_tokens_accepted == "some_tokens_accepted": | ||
last_accepted_indices = torch.randint(low=-1, | ||
high=k, | ||
size=(batch_size, )) | ||
accepted = mock_causal_accepted_tensor(k, last_accepted_indices) | ||
else: | ||
raise AssertionError() | ||
|
||
recovered_token_ids = torch.randint(low=0, | ||
high=vocab_size, | ||
size=(batch_size, k), | ||
dtype=torch.int64, | ||
device="cuda") | ||
draft_token_ids = torch.randint(low=0, | ||
high=vocab_size, | ||
size=(batch_size, k), | ||
dtype=torch.int64, | ||
device="cuda") | ||
bonus_token_ids = torch.randint(low=0, | ||
high=vocab_size, | ||
size=(batch_size, 1), | ||
dtype=torch.int64, | ||
device="cuda") | ||
|
||
rejection_sampler = RejectionSampler() | ||
rejection_sampler.init_gpu_tensors(rank=0) | ||
output_token_ids = rejection_sampler._create_output( # pylint: disable=protected-access | ||
accepted, | ||
recovered_token_ids, | ||
draft_token_ids, | ||
bonus_token_ids, | ||
) | ||
|
||
if which_tokens_accepted == "all_tokens_accepted": | ||
# Expect all tokens to be equal to draft tokens. | ||
assert torch.equal(output_token_ids[:, :-1], draft_token_ids) | ||
|
||
# Expect all bonus tokens to be included. | ||
assert torch.equal(output_token_ids[:, -1:], bonus_token_ids) | ||
elif which_tokens_accepted == "no_tokens_accepted": | ||
# Expect first token to be equal to recovered tokens. | ||
assert torch.equal(output_token_ids[:, 0], recovered_token_ids[:, 0]) | ||
|
||
# Expect everything else to be -1. | ||
assert torch.equal(output_token_ids[:, 1:], | ||
torch.ones_like(output_token_ids[:, 1:]) * -1) | ||
elif which_tokens_accepted == "some_tokens_accepted": | ||
recovered_plus_bonus = torch.cat( | ||
(recovered_token_ids, bonus_token_ids), dim=-1) | ||
# Assert first rejected token is a recovered token or bonus token. | ||
assert torch.equal( | ||
recovered_plus_bonus[torch.arange(0, batch_size), | ||
last_accepted_indices + 1], | ||
output_token_ids[torch.arange(0, batch_size), | ||
last_accepted_indices + 1]) | ||
|
||
# Assert every subsequent token is -1. | ||
subsequent_mask = torch.arange(0, k + 1).expand( | ||
batch_size, k + 1) >= (last_accepted_indices + 2).unsqueeze(-1) | ||
assert torch.all(output_token_ids[subsequent_mask] == -1) | ||
|
||
|
||
@pytest.mark.parametrize("k", list(range(1, 6))) | ||
@pytest.mark.parametrize("vocab_size", [30_000, 50_000]) | ||
@pytest.mark.parametrize("batch_size", list(range(1, 32))) | ||
@torch.inference_mode() | ||
def test_no_crash_with_varying_dims(k: int, vocab_size: int, batch_size: int): | ||
rejection_sampler = RejectionSampler() | ||
rejection_sampler.init_gpu_tensors(rank=0) | ||
|
||
draft_probs = torch.rand(batch_size, | ||
k, | ||
vocab_size, | ||
dtype=torch.float32, | ||
device="cuda") | ||
target_probs = torch.rand(batch_size, | ||
k, | ||
vocab_size, | ||
dtype=torch.float32, | ||
device="cuda") | ||
bonus_token_ids = torch.randint(low=0, | ||
high=vocab_size, | ||
size=(batch_size, 1), | ||
dtype=torch.int64, | ||
device="cuda") | ||
draft_token_ids = torch.randint(low=0, | ||
high=vocab_size, | ||
size=(batch_size, k), | ||
dtype=torch.int64, | ||
device="cuda") | ||
|
||
rejection_sampler(target_probs, bonus_token_ids, draft_probs, | ||
draft_token_ids) | ||
|
||
|
||
@pytest.mark.parametrize("above_or_below_vocab_range", ["above", "below"]) | ||
@pytest.mark.parametrize("which_token_ids", | ||
["bonus_token_ids", "draft_token_ids"]) | ||
@torch.inference_mode() | ||
def test_raises_when_vocab_oob(above_or_below_vocab_range: str, | ||
which_token_ids: str): | ||
k = 3 | ||
batch_size = 5 | ||
vocab_size = 30_000 | ||
|
||
rejection_sampler = RejectionSampler(strict_mode=True) | ||
rejection_sampler.init_gpu_tensors(rank=0) | ||
|
||
draft_probs = torch.rand(batch_size, | ||
k, | ||
vocab_size, | ||
dtype=torch.float32, | ||
device="cuda") | ||
target_probs = torch.rand(batch_size, | ||
k, | ||
vocab_size, | ||
dtype=torch.float32, | ||
device="cuda") | ||
bonus_token_ids = torch.randint(low=0, | ||
high=vocab_size, | ||
size=(batch_size, 1), | ||
dtype=torch.int64, | ||
device="cuda") | ||
draft_token_ids = torch.randint(low=0, | ||
high=vocab_size, | ||
size=(batch_size, k), | ||
dtype=torch.int64, | ||
device="cuda") | ||
|
||
oob_token_ids = None | ||
if which_token_ids == "bonus_token_ids": | ||
oob_token_ids = bonus_token_ids | ||
elif which_token_ids == "draft_token_ids": | ||
oob_token_ids = draft_token_ids | ||
else: | ||
raise AssertionError() | ||
|
||
if above_or_below_vocab_range == "above": | ||
rogue_token_id = vocab_size + 1 | ||
elif above_or_below_vocab_range == "below": | ||
rogue_token_id = -1 | ||
else: | ||
raise AssertionError() | ||
|
||
oob_token_ids[0][0] = rogue_token_id | ||
|
||
with pytest.raises(AssertionError): | ||
rejection_sampler(target_probs, bonus_token_ids, draft_probs, | ||
draft_token_ids) | ||
|
||
|
||
@pytest.mark.parametrize("draft_and_target_probs_equal", [True, False]) | ||
@pytest.mark.parametrize("seed", list(range(5))) | ||
@torch.inference_mode() | ||
def test_rejection_sampling_approximates_target_distribution( | ||
seed: int, draft_and_target_probs_equal: bool): | ||
"""Verify rejection sampling approximates target distribution, | ||
despite sampling from a potentially distinct draft distribution. | ||
This is done by first creating a random target probability | ||
distribution and a random draft probability distribution. We then | ||
sample token ids from the rejection sampler using these draft | ||
and target distributions. The samples are used to estimate | ||
the output probability distribution, which we expect to approximate | ||
the target distribution. | ||
A basic distance metric is used to determine similarity between | ||
distributions. | ||
We expect that as we increase the number of samples, | ||
the distance between the observed distribution and the target | ||
distribution decreases. To measure this, we compare the distance | ||
of the observed distribution against both the target distribution | ||
and a uniform random distribution. We expect the distance between | ||
the observed distribution and the target distribution to improve | ||
much more than the distance improvement between the observed | ||
distribution and the random distribution. | ||
When draft_and_target_probs_equal=True, the draft and target | ||
probabilities are exactly equal. Rejection sampling should | ||
still work without any NaNs or exceptions. | ||
""" | ||
set_random_seed(seed) | ||
|
||
helper = _CorrectnessTestHelper( | ||
vocab_size=10, | ||
rejection_sampler=RejectionSampler(), | ||
) | ||
|
||
draft_probs, target_probs, reference_probs = helper.generate_probs_for_test( | ||
draft_and_target_probs_equal) | ||
|
||
sample_sizes = [10, 100, 1_000, 10_000, 100_000] | ||
distance_wrt_reference = [] | ||
distance_wrt_target = [] | ||
|
||
for num_samples in sample_sizes: | ||
(reference_vs_rejsample_dist, | ||
target_vs_rejsample_dist) = helper.run_and_compare_distributions( | ||
draft_probs, | ||
target_probs, | ||
reference_probs, | ||
num_samples, | ||
) | ||
|
||
distance_wrt_reference.append(reference_vs_rejsample_dist) | ||
distance_wrt_target.append(target_vs_rejsample_dist) | ||
|
||
relative_change_in_distance_wrt_target = get_ratio_first_to_last( | ||
distance_wrt_target) | ||
relative_change_in_distance_wrt_reference = get_ratio_first_to_last( | ||
distance_wrt_reference) | ||
|
||
print(f"{num_samples=} {target_vs_rejsample_dist=:.05f} " | ||
f"{reference_vs_rejsample_dist=:.05f}") | ||
print(f"{num_samples=} {relative_change_in_distance_wrt_target=:.02f} " | ||
f"{relative_change_in_distance_wrt_reference=:.02f}") | ||
|
||
relative_change_in_distance_wrt_target = get_ratio_first_to_last( | ||
distance_wrt_target) | ||
relative_change_in_distance_wrt_reference = get_ratio_first_to_last( | ||
distance_wrt_reference) | ||
|
||
expected_improvement_multiplier = 20 | ||
assert (relative_change_in_distance_wrt_target > | ||
relative_change_in_distance_wrt_reference * | ||
expected_improvement_multiplier) | ||
|
||
|
||
def get_ratio_first_to_last(elements: List[float]) -> float: | ||
return elements[0] / elements[-1] | ||
|
||
|
||
class _CorrectnessTestHelper: | ||
"""Class that packages together logic required for the unit-level | ||
rejection sampling correctness test. | ||
""" | ||
|
||
def __init__(self, vocab_size: int, rejection_sampler: RejectionSampler): | ||
self.rejection_sampler = rejection_sampler | ||
self.vocab_size = vocab_size | ||
self.vocab_range = (0, vocab_size) | ||
|
||
self.rejection_sampler.init_gpu_tensors(rank=0) | ||
|
||
# Keep test simple, use k=1 | ||
self.k = 1 | ||
|
||
# Bonus tokens not used, but rejection sampler requires | ||
# correct shape. | ||
self.num_bonus_tokens = 1 | ||
|
||
def generate_probs_for_test( | ||
self, draft_and_target_probs_equal: bool | ||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | ||
draft_probs, target_probs = [ | ||
F.softmax( | ||
torch.rand(self.vocab_size, dtype=torch.float32), | ||
dim=-1, | ||
) for _ in range(2) | ||
] | ||
|
||
num_reference_probs = 100 | ||
reference_probs = F.softmax( | ||
torch.rand(num_reference_probs, | ||
self.vocab_size, | ||
dtype=torch.float32), | ||
dim=-1, | ||
) | ||
|
||
if draft_and_target_probs_equal: | ||
target_probs = draft_probs.clone() | ||
|
||
return draft_probs, target_probs, reference_probs | ||
|
||
def run_and_compare_distributions(self, draft_probs: torch.Tensor, | ||
target_probs: torch.Tensor, | ||
reference_probs: torch.Tensor, | ||
num_samples: int) -> Tuple[float, float]: | ||
# Sample using rejection sampling. | ||
rej_sample_probs = self._estimate_rejection_sampling_pdf( | ||
draft_probs, target_probs, num_samples) | ||
|
||
# Average distance from reference probs. | ||
reference_vs_rejsample_dist = torch.dist( | ||
reference_probs, | ||
rej_sample_probs).item() / reference_probs.shape[0] | ||
target_vs_rejsample_dist = torch.dist(target_probs, | ||
rej_sample_probs).item() | ||
|
||
return reference_vs_rejsample_dist, target_vs_rejsample_dist | ||
|
||
def _estimate_rejection_sampling_pdf( | ||
self, | ||
draft_probs: torch.Tensor, | ||
target_probs: torch.Tensor, | ||
num_samples: int, | ||
) -> torch.Tensor: | ||
# Repeat draft probs num_samples times. | ||
draft_probs = draft_probs.reshape(1, self.k, self.vocab_size).repeat( | ||
num_samples, 1, 1) | ||
|
||
# Repeat target probs num_samples * k times. | ||
# Rejection sampler requires bonus token probs, but they aren't used. | ||
target_probs = target_probs.reshape(1, 1, self.vocab_size).repeat( | ||
num_samples, self.k, 1) | ||
|
||
# Randomly sample draft token ids from draft probs. | ||
draft_token_ids = torch.multinomial(draft_probs[:, 0, :], | ||
num_samples=1, | ||
replacement=True).reshape( | ||
num_samples, self.k) | ||
|
||
# Bonus tokens not used but required. | ||
bonus_token_ids = torch.zeros((1, self.num_bonus_tokens), | ||
dtype=torch.int64, | ||
device="cuda").repeat(num_samples, 1) | ||
|
||
# Get output tokens via rejection sampling. | ||
output_token_ids = self.rejection_sampler(target_probs.to("cuda"), | ||
bonus_token_ids.to("cuda"), | ||
draft_probs.to("cuda"), | ||
draft_token_ids.to("cuda")) | ||
|
||
# Remove bonus tokens | ||
output_token_ids = output_token_ids[:, :-1].flatten() | ||
|
||
# Estimate probability density function | ||
hist = torch.histogram(output_token_ids.to(dtype=torch.float, | ||
device="cpu"), | ||
bins=self.vocab_size, | ||
range=self.vocab_range, | ||
density=True) | ||
|
||
return hist.hist |
Oops, something went wrong.