Skip to content

The JF-Lab CHEndoscope pipeline for preprocessing and analysis.

License

Notifications You must be signed in to change notification settings

linamnt/chendoscope-minipipe

 
 

Repository files navigation

JF Lab Pipeline for CHEndoscope Analysis

The JF-Lab pipeline for preprocessing and analysis of CHEndoscope calcium imaging data.

  1. Get your .mkv files to be merged, downsampled and/or motion corrected.
  2. Run the following on the .mkv files:
    python minipipe.py file1.mkv file2.mkv -c 2000 --motion_corr --cores 8
    Flags:
    -d/--downsample: temporal downsample factor, defaut=4
    -c/--chunk_size: chunk_size, default=2000
    --motion_corr: if you want to correct motion, default=False
    -t/--threshold: if you want to indicate threshold for motion correction, default=1.0
    -target_frame: if you want to indicate frame of reference for motion correction, default=0
    --cores: number of threads to run in parallel, default=4
    --bigtiff: If .mkv(s) amount to > 12Gb, must use this mode or memory error will occur
    --merge: merge all the files instead of individually processing them
    -o/--output: If --merge, then the name for the merged .tiff file
    -f/--format: output format as tiff or avi, default is tiffs
  3. Run CNMF-E on the .tiff files, output is a .mat file.
  4. Use review_traces.py to manually inspect the neurons to keep or exclude from analysis:
    python review_traces.py traces.mat
  • Press 'k' to keep, 'j' to exclude, or the 'keep'/'exclude' buttons.

About

The JF-Lab CHEndoscope pipeline for preprocessing and analysis.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%