-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* feat: refactoring raw data * feat: create first model
- Loading branch information
1 parent
38daa5f
commit a545d0d
Showing
5 changed files
with
125 additions
and
28 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,3 +2,5 @@ pre-commit==3.5.0 | |
kaggle==1.5.16 | ||
dvc==3.28.0 | ||
luigi==3.4.0 | ||
pandas==2.1.2 | ||
scikit-learn==1.3.2 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
import luigi | ||
import zipfile | ||
|
||
|
||
class SentimentAnalysisZipFile(luigi.ExternalTask): | ||
""" | ||
Raw data zip file | ||
""" | ||
|
||
def output(self): | ||
return luigi.LocalTarget("../data/sentiment-analysis-on-movie-reviews.zip") | ||
|
||
|
||
class ExtractRawData(luigi.Task): | ||
""" | ||
Extract raw data from zip file | ||
""" | ||
|
||
def requires(self): | ||
return SentimentAnalysisZipFile() | ||
|
||
def output(self): | ||
return { | ||
"test": luigi.LocalTarget("../data/output/test.tsv.zip"), | ||
"train": luigi.LocalTarget("../data/output/train.tsv.zip"), | ||
"sampleSubission": luigi.LocalTarget("../data/output/sampleSubmission.csv"), | ||
} | ||
|
||
def run(self): | ||
# Unzip data file | ||
with zipfile.ZipFile(self.input().path, "r") as zip_ref: | ||
zip_ref.extractall("../data/output/") |
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
import luigi | ||
import joblib | ||
import pandas as pd | ||
import scipy.sparse | ||
from data import ExtractRawData | ||
from sklearn.feature_extraction.text import CountVectorizer | ||
from sklearn.neural_network import MLPClassifier | ||
|
||
|
||
class Preprocessing(luigi.Task): | ||
""" | ||
NLP Preprocessing | ||
""" | ||
|
||
def requires(self): | ||
return ExtractRawData() | ||
|
||
def output(self): | ||
return { | ||
"X": luigi.LocalTarget("../data/output/preprocessing.npz"), | ||
"vectorizer": luigi.LocalTarget("../data/output/preprocessing.joblib"), | ||
} | ||
|
||
def run(self): | ||
dataset = self.input() | ||
train = pd.read_csv(dataset["train"].path, sep="\t") | ||
corpus = train["Phrase"] | ||
vectorizer = CountVectorizer( | ||
lowercase=True, ngram_range=(1, 2), max_features=10_000 | ||
) | ||
X = vectorizer.fit_transform(corpus) | ||
# storing results | ||
scipy.sparse.save_npz(self.output()["X"].path, X) | ||
joblib.dump(vectorizer, self.output()["vectorizer"].path) | ||
|
||
|
||
class TrainModel(luigi.Task): | ||
""" | ||
Train model | ||
""" | ||
|
||
def requires(self): | ||
return { | ||
"data": ExtractRawData(), | ||
"preprocessing": Preprocessing(), | ||
} | ||
|
||
def output(self): | ||
return luigi.LocalTarget("../data/output/model.joblib") | ||
|
||
def run(self): | ||
_input = self.input() | ||
X = scipy.sparse.load_npz(_input["preprocessing"]["X"].path) | ||
y = pd.read_csv(_input["data"]["train"].path, sep="\t")["Sentiment"] | ||
model = MLPClassifier( | ||
max_iter=500, | ||
hidden_layer_sizes=(512, 256), | ||
early_stopping=True, | ||
random_state=29, | ||
verbose=True, | ||
) | ||
model.fit(X, y) | ||
joblib.dump(model, self.output().path) | ||
|
||
|
||
class Predict(luigi.Task): | ||
""" | ||
Predict | ||
""" | ||
|
||
def requires(self): | ||
return { | ||
"data": ExtractRawData(), | ||
"preprocessing": Preprocessing(), | ||
"model": TrainModel(), | ||
} | ||
|
||
def output(self): | ||
return luigi.LocalTarget("../data/output/submission.csv") | ||
|
||
def run(self): | ||
_input = self.input() | ||
model = joblib.load(_input["model"].path) | ||
vectorizer = joblib.load(_input["preprocessing"]["vectorizer"].path) | ||
test = pd.read_csv(_input["data"]["test"].path, sep="\t") | ||
# Predicting | ||
test_X = vectorizer.transform(test["Phrase"].fillna("")) | ||
test["Sentiment"] = model.predict(test_X) | ||
test[["PhraseId", "Sentiment"]].to_csv(self.output().path, index=False) |