Pytorch implementation from NUS DSML DSA5204 Group 12 for
- VPU (A Variational Approach for Learning from Positive and Unlabeled Data)
- nnPU (Positive-Unlabeled Learning with Non-Negative Risk Estimator)
- baseline model
- install conda environment with yaml file or with following command:
conda create -n DSA5204 python=3.8 pytorch=2.0.0 torchvision numpy scikit-learn -c pytorch
- conda activate DSA5204
- python run.py --dataset pageblocks --batch_size 200 --method vpu --gpu 0
- --dataset {fashionMNIST, pageblocks}
- --batch_size
- --method {vpu, nnpu, raw}
- --gpu (Valid only when running on cuda available machines)
- --data_path
- --prior (*Only used for nnPU method)