Template for deep learning projects using pytorch and doing classification.
This template is designed as a fully working experiment starter. That is, simply running python train.py
will run a small CNN on Cifar-10, while handling logging, checkpointing, neat printing to the terminal, datasets, etc.
Some notable features include:
- Immediate usability of the following models:
- A small/shallow CNN
- A standard Resnet
- A preactivation Resnet
- A wide Resnet
- A densenet
- Immediate usability of the following datasets:
- Built in logging and progress bars
- Built in and extensive data augmentation, including:
- Random horizontal flips
- Random crops
- Cutout
- Random limited rotations
- Random scaling
- Random shearing
- Colour jitter
- A notebook to exemplify the use of the simple logging features
train.py
: main training code, run this
→→→ models
: neural networks
→→→ notebooks
: notebooks for plotting results
→→→ utils
: necessary utilities, including experiment admin and datasets
- To train the default CNN on Cifar-10:
python train.py
- To train a 4 layer deep (2 convs of widths 64 and 128, 2 fully connected layers of widths 256, 10) CNN on MNIST:
python train.py -en MNIST-cnn-4 -data MNIST -model cnn -fil 64 128 -str 2 2 -ker 3 3 -lin 256
- To train a preactivation resnet, depth 18, on Cinic-10-enlarged:
python train.py -en cinic10enlarged-preact-18 -data Cinic-10-enlarged -model preact_resnet -dep 18
- To train the same model using the random horizontal flips, random crops (with padding 4) and cutout:
python train.py -en cinic10enlarged-preact-18 -data Cinic-10-enlarged -model preact_resnet -dep 18 -aug random_h_flip random_crop cutout
- To train a wide resnet, depth 40 and widen factor 2, on Cifar-10:
python train.py -en Cifar-10-wresnet-40-2 -data Cifar-10 -model wresnet -dep 40 -wf 2
- -data, --dataset (str)
- Which dataset to use
- 'Cifar-10', 'Cifar-100', 'Cinic-10', 'Cinic-10-enlarged', 'Fashion-MNIST, 'MNIST'
- -norm, --dataset_norm_type (str)
- How to normalize data
- 'sandardize' --> mean of zero, standard deviation of one
- 'zeroone' --> image range of [0, 1]
- -batch, --batch_size (int)
- Batch Size
- -tbatch, --test_batch_size (int)
- Test Batch Size
- -x, --max_epochs (int)
- How many epochs to run in total
- -s, --seed (int)
- Random seed to use for reproducibility
- -aug, --data_aug ([string])
- List of Data augmentation to apply
- 'random_h_flip', 'random_v_vlip', 'color_jitter', 'affine', 'random_crop', 'random_order', 'cutout
- NOTE, if applying 'affine', the following three arguments must be given: 'random_rot_D', 'random_scale_S1_S2', 'random_sheer_P', where D defines the maximum rotation (in degrees), S1 and S2 define the lower and upper bounds for random scaling (between [0, 1]), and P defines the maximum sheer rotation (in degrees).
- -en, --exp_name (str)
- Experiment name
- -o, --logs_path (str)
- Directory to save log files, check points, and any images
- -resume, --resume (int)
- Resume training from latest point in training. This is effectively a bool and will be False if resume is zero
- -save, --save (int)
- Save checkpoint files? This is effectively a bool and will be False if resume is zero
- -saveimg, --save_images (int)
- Create a folder for saved images in log directory? This is effectively a bool and will be False if resume is zero
- -model, --model (int)
- Which model to train
- 'resnet', 'preact_resnet', 'densenet', 'wresnet', 'cnn'
- -dep, --resdepth (int)
- ResNet depth
- For resnet, options are: 18, 34, 50, 101
- For preact_resnet, options are: 18, 34, 50, 101
- For densenet, options are: 121, 161, 169, 201
- For wresnet, (depth - 4) % 6 = 0
- -wf, --widen_factor (int)
- Wide resnet widen factor
- -act, --activation
- Activation function for CNN, not relevant to resnets
- -fil --filters ([int])
- Filter list for CNN
- -str, --strides ([int])
- Strides list for CNN
- -ker, --kernel_sizes ([int])
- Kernel size list for CNN
- -lin, --linear_widths ([int])
- Additional linear layer widths. If empty, cnn goes from conv outs to single linear layer
- -bn, --use_batch_norm (int)
- Use batch norm for CNN. This is effectively a bool and will be False if resume is zero
- -l, --learning_rate (float)
- Base learning rate
- -sched, --scheduler (str)
- Scheduler for learning rate annealing
- 'CosineAnnealing','MultiStep'
- -mile, --milestones ([int])
- Milstones (epochs) for multi step scheduler annealing
- -optim, --optim (str)
- Optimizer to use
- 'Adam', 'SGD'
- -wd, --weight_decay (float)
- Weight decay value
- -mom, --momentum
- Momentum multiplier
Simply clone (git clone [email protected]:learning-luke/overfit-aware-networks.git
) or download this repo and run one of the commands.
Additionally, the following are the required packages.
The suggested and easiest way to get this working quickly is to install miniconda and then run the following two commands:
conda create -n deep-learning
conda install -n deep-learning pytorch torchvision cudatoolkit=9.0 tqdm scipy -c anaconda -c pytorch
This assumes you will be using a GPU version. Once installation is complete, activate the enviroment with:
source activate deep-learning
and then run this repo's code.
Note: the resnets and densenet are adapted from https://github.com/kuangliu/pytorch-cifar and the wide resnet from https://github.com/xternalz/WideResNet-pytorch.