Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: lemmas about Array.append #6612

Merged
merged 3 commits into from
Jan 12, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions src/Init/Data/Array/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -244,8 +244,7 @@ def ofFn {n} (f : Fin n → α) : Array α := go 0 (mkEmpty n) where
def range (n : Nat) : Array Nat :=
ofFn fun (i : Fin n) => i

def singleton (v : α) : Array α :=
mkArray 1 v
@[inline] protected def singleton (v : α) : Array α := #[v]

def back! [Inhabited α] (a : Array α) : α :=
a[a.size - 1]!
Expand Down
160 changes: 91 additions & 69 deletions src/Init/Data/Array/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1506,9 +1506,99 @@ theorem filterMap_eq_push_iff {f : α → Option β} {l : Array α} {l' : Array

/-! Content below this point has not yet been aligned with `List`. -/

/-! ### singleton -/

@[simp] theorem singleton_def (v : α) : Array.singleton v = #[v] := rfl

/-! ### append -/

@[simp] theorem toArray_eq_append_iff {xs : List α} {as bs : Array α} :
xs.toArray = as ++ bs ↔ xs = as.toList ++ bs.toList := by
cases as
cases bs
simp

@[simp] theorem append_eq_toArray_iff {as bs : Array α} {xs : List α} :
as ++ bs = xs.toArray ↔ as.toList ++ bs.toList = xs := by
cases as
cases bs
simp

theorem singleton_eq_toArray_singleton (a : α) : #[a] = [a].toArray := rfl

@[simp] theorem singleton_def (v : α) : singleton v = #[v] := rfl
@[simp] theorem empty_append_fun : ((#[] : Array α) ++ ·) = id := by
funext ⟨l⟩
simp

@[simp] theorem mem_append {a : α} {s t : Array α} : a ∈ s ++ t ↔ a ∈ s ∨ a ∈ t := by
simp only [mem_def, toList_append, List.mem_append]

theorem mem_append_left {a : α} {l₁ : Array α} (l₂ : Array α) (h : a ∈ l₁) : a ∈ l₁ ++ l₂ :=
mem_append.2 (Or.inl h)

theorem mem_append_right {a : α} (l₁ : Array α) {l₂ : Array α} (h : a ∈ l₂) : a ∈ l₁ ++ l₂ :=
mem_append.2 (Or.inr h)

@[simp] theorem size_append (as bs : Array α) : (as ++ bs).size = as.size + bs.size := by
simp only [size, toList_append, List.length_append]

theorem empty_append (as : Array α) : #[] ++ as = as := by simp

theorem append_empty (as : Array α) : as ++ #[] = as := by simp

theorem getElem_append {as bs : Array α} (h : i < (as ++ bs).size) :
(as ++ bs)[i] = if h' : i < as.size then as[i] else bs[i - as.size]'(by simp at h; omega) := by
cases as; cases bs
simp [List.getElem_append]

theorem getElem_append_left {as bs : Array α} {h : i < (as ++ bs).size} (hlt : i < as.size) :
(as ++ bs)[i] = as[i] := by
simp only [← getElem_toList]
have h' : i < (as.toList ++ bs.toList).length := by rwa [← length_toList, toList_append] at h
conv => rhs; rw [← List.getElem_append_left (bs := bs.toList) (h' := h')]
apply List.get_of_eq; rw [toList_append]

theorem getElem_append_right {as bs : Array α} {h : i < (as ++ bs).size} (hle : as.size ≤ i) :
(as ++ bs)[i] = bs[i - as.size]'(Nat.sub_lt_left_of_lt_add hle (size_append .. ▸ h)) := by
simp only [← getElem_toList]
have h' : i < (as.toList ++ bs.toList).length := by rwa [← length_toList, toList_append] at h
conv => rhs; rw [← List.getElem_append_right (h₁ := hle) (h₂ := h')]
apply List.get_of_eq; rw [toList_append]

theorem getElem?_append_left {as bs : Array α} {i : Nat} (hn : i < as.size) :
(as ++ bs)[i]? = as[i]? := by
have hn' : i < (as ++ bs).size := Nat.lt_of_lt_of_le hn <|
size_append .. ▸ Nat.le_add_right ..
simp_all [getElem?_eq_getElem, getElem_append]

theorem getElem?_append_right {as bs : Array α} {i : Nat} (h : as.size ≤ i) :
(as ++ bs)[i]? = bs[i - as.size]? := by
cases as
cases bs
simp at h
simp [List.getElem?_append_right, h]

theorem getElem?_append {as bs : Array α} {i : Nat} :
(as ++ bs)[i]? = if i < as.size then as[i]? else bs[i - as.size]? := by
split <;> rename_i h
· exact getElem?_append_left h
· exact getElem?_append_right (by simpa using h)

/-- Variant of `getElem_append_left` useful for rewriting from the small array to the big array. -/
theorem getElem_append_left' (l₂ : Array α) {l₁ : Array α} {i : Nat} (hi : i < l₁.size) :
l₁[i] = (l₁ ++ l₂)[i]'(by simpa using Nat.lt_add_right l₂.size hi) := by
rw [getElem_append_left] <;> simp

/-- Variant of `getElem_append_right` useful for rewriting from the small array to the big array. -/
theorem getElem_append_right' (l₁ : Array α) {l₂ : Array α} {i : Nat} (hi : i < l₂.size) :
l₂[i] = (l₁ ++ l₂)[i + l₁.size]'(by simpa [Nat.add_comm] using Nat.add_lt_add_left hi _) := by
rw [getElem_append_right] <;> simp [*, Nat.le_add_left]

theorem getElem_of_append {l l₁ l₂ : Array α} (eq : l = l₁.push a ++ l₂) (h : l₁.size = i) :
l[i]'(eq ▸ h ▸ by simp_arith) = a := Option.some.inj <| by
rw [← getElem?_eq_getElem, eq, getElem?_append_left (by simp; omega), ← h]
simp


-- This is a duplicate of `List.toArray_toList`.
-- It's confusing to guess which namespace this theorem should live in,
Expand Down Expand Up @@ -2122,74 +2212,6 @@ theorem getElem?_modify {as : Array α} {i : Nat} {f : α → α} {j : Nat} :

theorem size_empty : (#[] : Array α).size = 0 := rfl

/-! ### append -/

@[simp] theorem mem_append {a : α} {s t : Array α} : a ∈ s ++ t ↔ a ∈ s ∨ a ∈ t := by
simp only [mem_def, toList_append, List.mem_append]

theorem mem_append_left {a : α} {l₁ : Array α} (l₂ : Array α) (h : a ∈ l₁) : a ∈ l₁ ++ l₂ :=
mem_append.2 (Or.inl h)

theorem mem_append_right {a : α} (l₁ : Array α) {l₂ : Array α} (h : a ∈ l₂) : a ∈ l₁ ++ l₂ :=
mem_append.2 (Or.inr h)

@[simp] theorem size_append (as bs : Array α) : (as ++ bs).size = as.size + bs.size := by
simp only [size, toList_append, List.length_append]

theorem empty_append (as : Array α) : #[] ++ as = as := by simp

theorem append_empty (as : Array α) : as ++ #[] = as := by simp

theorem getElem_append {as bs : Array α} (h : i < (as ++ bs).size) :
(as ++ bs)[i] = if h' : i < as.size then as[i] else bs[i - as.size]'(by simp at h; omega) := by
cases as; cases bs
simp [List.getElem_append]

theorem getElem_append_left {as bs : Array α} {h : i < (as ++ bs).size} (hlt : i < as.size) :
(as ++ bs)[i] = as[i] := by
simp only [← getElem_toList]
have h' : i < (as.toList ++ bs.toList).length := by rwa [← length_toList, toList_append] at h
conv => rhs; rw [← List.getElem_append_left (bs := bs.toList) (h' := h')]
apply List.get_of_eq; rw [toList_append]

theorem getElem_append_right {as bs : Array α} {h : i < (as ++ bs).size} (hle : as.size ≤ i) :
(as ++ bs)[i] = bs[i - as.size]'(Nat.sub_lt_left_of_lt_add hle (size_append .. ▸ h)) := by
simp only [← getElem_toList]
have h' : i < (as.toList ++ bs.toList).length := by rwa [← length_toList, toList_append] at h
conv => rhs; rw [← List.getElem_append_right (h₁ := hle) (h₂ := h')]
apply List.get_of_eq; rw [toList_append]

theorem getElem?_append_left {as bs : Array α} {i : Nat} (hn : i < as.size) :
(as ++ bs)[i]? = as[i]? := by
have hn' : i < (as ++ bs).size := Nat.lt_of_lt_of_le hn <|
size_append .. ▸ Nat.le_add_right ..
simp_all [getElem?_eq_getElem, getElem_append]

theorem getElem?_append_right {as bs : Array α} {i : Nat} (h : as.size ≤ i) :
(as ++ bs)[i]? = bs[i - as.size]? := by
cases as
cases bs
simp at h
simp [List.getElem?_append_right, h]

theorem getElem?_append {as bs : Array α} {i : Nat} :
(as ++ bs)[i]? = if i < as.size then as[i]? else bs[i - as.size]? := by
split <;> rename_i h
· exact getElem?_append_left h
· exact getElem?_append_right (by simpa using h)

@[simp] theorem toArray_eq_append_iff {xs : List α} {as bs : Array α} :
xs.toArray = as ++ bs ↔ xs = as.toList ++ bs.toList := by
cases as
cases bs
simp

@[simp] theorem append_eq_toArray_iff {as bs : Array α} {xs : List α} :
as ++ bs = xs.toArray ↔ as.toList ++ bs.toList = xs := by
cases as
cases bs
simp

/-! ### flatten -/

@[simp] theorem toList_flatten {l : Array (Array α)} :
Expand Down
2 changes: 1 addition & 1 deletion src/Init/Data/List/ToArray.lean
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ theorem toArray_cons (a : α) (l : List α) : (a :: l).toArray = #[a] ++ l.toArr
@[simp] theorem isEmpty_toArray (l : List α) : l.toArray.isEmpty = l.isEmpty := by
cases l <;> simp [Array.isEmpty]

@[simp] theorem toArray_singleton (a : α) : (List.singleton a).toArray = singleton a := rfl
@[simp] theorem toArray_singleton (a : α) : (List.singleton a).toArray = Array.singleton a := rfl

@[simp] theorem back!_toArray [Inhabited α] (l : List α) : l.toArray.back! = l.getLast! := by
simp only [back!, size_toArray, Array.get!_eq_getElem!, getElem!_toArray, getLast!_eq_getElem!]
Expand Down
Loading