Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: fixes #2775 #2790

Merged
merged 2 commits into from
Nov 3, 2023
Merged

fix: fixes #2775 #2790

merged 2 commits into from
Nov 3, 2023

Conversation

leodemoura
Copy link
Member

No description provided.

`simp` was previously swallowing runtime exceptions and masking an
issue with this example.

`runT` is defined by well-founded recursion, but reducing the ground
term `runT x` takes a long time when `decide := true`.

Remark PR #2722 changes the `decide` default value to `false`.

When `decide := true`, we should probably have better diagnostics /
error messages for this kind of situation.
@github-actions github-actions bot added the toolchain-available A toolchain is available for this PR, at leanprover/lean4-pr-releases:pr-release-NNNN label Oct 31, 2023
leanprover-community-mathlib4-bot added a commit to leanprover-community/mathlib4 that referenced this pull request Oct 31, 2023
@leanprover-community-mathlib4-bot leanprover-community-mathlib4-bot added the breaks-mathlib This is not necessarily a blocker for merging: but there needs to be a plan label Oct 31, 2023
@leanprover-community-mathlib4-bot
Copy link
Collaborator

leanprover-community-mathlib4-bot commented Oct 31, 2023

@kim-em
Copy link
Collaborator

kim-em commented Oct 31, 2023

The Mathlib failure here was a genuine one, revealing max recursion depth errors that were previously not surfacing.

I've made some workarounds at leanprover-community/mathlib4#8056, but we will need to work out the underlying cause of the max recursion depth errors.

@kim-em kim-em removed the breaks-mathlib This is not necessarily a blocker for merging: but there needs to be a plan label Oct 31, 2023
@kim-em kim-em self-assigned this Oct 31, 2023
@leanprover-community-mathlib4-bot leanprover-community-mathlib4-bot added breaks-mathlib This is not necessarily a blocker for merging: but there needs to be a plan builds-mathlib CI has verified that Mathlib builds against this PR and removed breaks-mathlib This is not necessarily a blocker for merging: but there needs to be a plan labels Nov 1, 2023
@leodemoura leodemoura merged commit 47c09ac into master Nov 3, 2023
19 checks passed
@leanprover-community-mathlib4-bot leanprover-community-mathlib4-bot added breaks-mathlib This is not necessarily a blocker for merging: but there needs to be a plan and removed builds-mathlib CI has verified that Mathlib builds against this PR labels Nov 4, 2023
mathlib-bors bot pushed a commit to leanprover-community/mathlib4 that referenced this pull request Nov 17, 2023
# PR contents

This is the supremum of

- #8284
- #8056
- #8023
- #8332
- #8226 (already approved)
- #7834 (already approved)

along with some minor fixes from failures on nightly-testing as Mathlib `master` is merged into it.

Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.

I am hopeful that in future we will be able to progressively merge adaptation PRs into a `bump/v4.X.0` branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.

# Lean PRs involved in this bump

In particular this includes adjustments for the Lean PRs

* leanprover/lean4#2778 
* leanprover/lean4#2790
* leanprover/lean4#2783
* leanprover/lean4#2825
* leanprover/lean4#2722

## leanprover/lean4#2778

We can get rid of all the 
```
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220
```
macros across Mathlib (and in any projects that want to write natural number powers of reals).

## leanprover/lean4#2722

Changes the default behaviour of `simp` to `(config := {decide := false})`. This makes `simp` (and consequentially `norm_num`) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by `simp` or `norm_num` to `decide` or `rfl`, or adding `(config := {decide := true})`. 

## leanprover/lean4#2783

This changed the behaviour of `simp` so that `simp [f]` will only unfold "fully applied" occurrences of `f`. The old behaviour can be recovered with `simp (config := { unfoldPartialApp := true })`. We may in future add a syntax for this, e.g. `simp [!f]`; please provide feedback! In the meantime, we have made the following changes:
* switching to using explicit lemmas that have the intended level of application
* `(config := { unfoldPartialApp := true })` in some places, to recover the old behaviour
* Using `@[eqns]` to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for `Function.comp` and `Function.flip`.

This change in Lean may require further changes down the line (e.g. adding the `!f` syntax, and/or upstreaming the special treatment for `Function.comp` and `Function.flip`, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!



Co-authored-by: leanprover-community-mathlib4-bot <[email protected]>
Co-authored-by: Scott Morrison <[email protected]>
Co-authored-by: Eric Wieser <[email protected]>
Co-authored-by: Mauricio Collares <[email protected]>
mathlib-bors bot pushed a commit to leanprover-community/mathlib4 that referenced this pull request Nov 17, 2023
# PR contents

This is the supremum of

- #8284
- #8056
- #8023
- #8332
- #8226 (already approved)
- #7834 (already approved)

along with some minor fixes from failures on nightly-testing as Mathlib `master` is merged into it.

Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.

I am hopeful that in future we will be able to progressively merge adaptation PRs into a `bump/v4.X.0` branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.

# Lean PRs involved in this bump

In particular this includes adjustments for the Lean PRs

* leanprover/lean4#2778 
* leanprover/lean4#2790
* leanprover/lean4#2783
* leanprover/lean4#2825
* leanprover/lean4#2722

## leanprover/lean4#2778

We can get rid of all the 
```
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220
```
macros across Mathlib (and in any projects that want to write natural number powers of reals).

## leanprover/lean4#2722

Changes the default behaviour of `simp` to `(config := {decide := false})`. This makes `simp` (and consequentially `norm_num`) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by `simp` or `norm_num` to `decide` or `rfl`, or adding `(config := {decide := true})`. 

## leanprover/lean4#2783

This changed the behaviour of `simp` so that `simp [f]` will only unfold "fully applied" occurrences of `f`. The old behaviour can be recovered with `simp (config := { unfoldPartialApp := true })`. We may in future add a syntax for this, e.g. `simp [!f]`; please provide feedback! In the meantime, we have made the following changes:
* switching to using explicit lemmas that have the intended level of application
* `(config := { unfoldPartialApp := true })` in some places, to recover the old behaviour
* Using `@[eqns]` to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for `Function.comp` and `Function.flip`.

This change in Lean may require further changes down the line (e.g. adding the `!f` syntax, and/or upstreaming the special treatment for `Function.comp` and `Function.flip`, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!



Co-authored-by: leanprover-community-mathlib4-bot <[email protected]>
Co-authored-by: Scott Morrison <[email protected]>
Co-authored-by: Eric Wieser <[email protected]>
Co-authored-by: Mauricio Collares <[email protected]>
alexkeizer pushed a commit to leanprover-community/mathlib4 that referenced this pull request Nov 17, 2023
# PR contents

This is the supremum of

- #8284
- #8056
- #8023
- #8332
- #8226 (already approved)
- #7834 (already approved)

along with some minor fixes from failures on nightly-testing as Mathlib `master` is merged into it.

Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.

I am hopeful that in future we will be able to progressively merge adaptation PRs into a `bump/v4.X.0` branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.

# Lean PRs involved in this bump

In particular this includes adjustments for the Lean PRs

* leanprover/lean4#2778 
* leanprover/lean4#2790
* leanprover/lean4#2783
* leanprover/lean4#2825
* leanprover/lean4#2722

## leanprover/lean4#2778

We can get rid of all the 
```
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220
```
macros across Mathlib (and in any projects that want to write natural number powers of reals).

## leanprover/lean4#2722

Changes the default behaviour of `simp` to `(config := {decide := false})`. This makes `simp` (and consequentially `norm_num`) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by `simp` or `norm_num` to `decide` or `rfl`, or adding `(config := {decide := true})`. 

## leanprover/lean4#2783

This changed the behaviour of `simp` so that `simp [f]` will only unfold "fully applied" occurrences of `f`. The old behaviour can be recovered with `simp (config := { unfoldPartialApp := true })`. We may in future add a syntax for this, e.g. `simp [!f]`; please provide feedback! In the meantime, we have made the following changes:
* switching to using explicit lemmas that have the intended level of application
* `(config := { unfoldPartialApp := true })` in some places, to recover the old behaviour
* Using `@[eqns]` to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for `Function.comp` and `Function.flip`.

This change in Lean may require further changes down the line (e.g. adding the `!f` syntax, and/or upstreaming the special treatment for `Function.comp` and `Function.flip`, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!



Co-authored-by: leanprover-community-mathlib4-bot <[email protected]>
Co-authored-by: Scott Morrison <[email protected]>
Co-authored-by: Eric Wieser <[email protected]>
Co-authored-by: Mauricio Collares <[email protected]>
alexkeizer pushed a commit to leanprover-community/mathlib4 that referenced this pull request Nov 21, 2023
This is the supremum of

- #8284
- #8056
- #8023
- #8332
- #8226 (already approved)
- #7834 (already approved)

along with some minor fixes from failures on nightly-testing as Mathlib `master` is merged into it.

Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.

I am hopeful that in future we will be able to progressively merge adaptation PRs into a `bump/v4.X.0` branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.

In particular this includes adjustments for the Lean PRs

* leanprover/lean4#2778
* leanprover/lean4#2790
* leanprover/lean4#2783
* leanprover/lean4#2825
* leanprover/lean4#2722

We can get rid of all the
```
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220
```
macros across Mathlib (and in any projects that want to write natural number powers of reals).

Changes the default behaviour of `simp` to `(config := {decide := false})`. This makes `simp` (and consequentially `norm_num`) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by `simp` or `norm_num` to `decide` or `rfl`, or adding `(config := {decide := true})`.

This changed the behaviour of `simp` so that `simp [f]` will only unfold "fully applied" occurrences of `f`. The old behaviour can be recovered with `simp (config := { unfoldPartialApp := true })`. We may in future add a syntax for this, e.g. `simp [!f]`; please provide feedback! In the meantime, we have made the following changes:
* switching to using explicit lemmas that have the intended level of application
* `(config := { unfoldPartialApp := true })` in some places, to recover the old behaviour
* Using `@[eqns]` to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for `Function.comp` and `Function.flip`.

This change in Lean may require further changes down the line (e.g. adding the `!f` syntax, and/or upstreaming the special treatment for `Function.comp` and `Function.flip`, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!

Co-authored-by: leanprover-community-mathlib4-bot <[email protected]>
Co-authored-by: Scott Morrison <[email protected]>
Co-authored-by: Eric Wieser <[email protected]>
Co-authored-by: Mauricio Collares <[email protected]>
grunweg pushed a commit to leanprover-community/mathlib4 that referenced this pull request Dec 15, 2023
# PR contents

This is the supremum of

- #8284
- #8056
- #8023
- #8332
- #8226 (already approved)
- #7834 (already approved)

along with some minor fixes from failures on nightly-testing as Mathlib `master` is merged into it.

Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.

I am hopeful that in future we will be able to progressively merge adaptation PRs into a `bump/v4.X.0` branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.

# Lean PRs involved in this bump

In particular this includes adjustments for the Lean PRs

* leanprover/lean4#2778 
* leanprover/lean4#2790
* leanprover/lean4#2783
* leanprover/lean4#2825
* leanprover/lean4#2722

## leanprover/lean4#2778

We can get rid of all the 
```
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220
```
macros across Mathlib (and in any projects that want to write natural number powers of reals).

## leanprover/lean4#2722

Changes the default behaviour of `simp` to `(config := {decide := false})`. This makes `simp` (and consequentially `norm_num`) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by `simp` or `norm_num` to `decide` or `rfl`, or adding `(config := {decide := true})`. 

## leanprover/lean4#2783

This changed the behaviour of `simp` so that `simp [f]` will only unfold "fully applied" occurrences of `f`. The old behaviour can be recovered with `simp (config := { unfoldPartialApp := true })`. We may in future add a syntax for this, e.g. `simp [!f]`; please provide feedback! In the meantime, we have made the following changes:
* switching to using explicit lemmas that have the intended level of application
* `(config := { unfoldPartialApp := true })` in some places, to recover the old behaviour
* Using `@[eqns]` to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for `Function.comp` and `Function.flip`.

This change in Lean may require further changes down the line (e.g. adding the `!f` syntax, and/or upstreaming the special treatment for `Function.comp` and `Function.flip`, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!



Co-authored-by: leanprover-community-mathlib4-bot <[email protected]>
Co-authored-by: Scott Morrison <[email protected]>
Co-authored-by: Eric Wieser <[email protected]>
Co-authored-by: Mauricio Collares <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
breaks-mathlib This is not necessarily a blocker for merging: but there needs to be a plan toolchain-available A toolchain is available for this PR, at leanprover/lean4-pr-releases:pr-release-NNNN
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants