Skip to content

Commit

Permalink
feat: avoid some redundant proof terms in grind (#6615)
Browse files Browse the repository at this point in the history
This PR adds two auxiliary functions `mkEqTrueCore` and `mkOfEqTrueCore`
that avoid redundant proof terms in proofs produced by `grind`.
  • Loading branch information
leodemoura authored Jan 12, 2025
1 parent c7939cf commit af8f3d1
Show file tree
Hide file tree
Showing 8 changed files with 98 additions and 64 deletions.
3 changes: 3 additions & 0 deletions src/Init/Grind/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,9 @@ import Init.Grind.Util

namespace Lean.Grind

theorem rfl_true : true = true :=
rfl

theorem intro_with_eq (p p' q : Prop) (he : p = p') (h : p' → q) : p → q :=
fun hp => h (he.mp hp)

Expand Down
112 changes: 63 additions & 49 deletions src/Lean/Meta/AppBuilder.lean
Original file line number Diff line number Diff line change
Expand Up @@ -11,14 +11,14 @@ import Lean.Meta.DecLevel

namespace Lean.Meta

/-- Return `id e` -/
/-- Returns `id e` -/
def mkId (e : Expr) : MetaM Expr := do
let type ← inferType e
let u ← getLevel type
return mkApp2 (mkConst ``id [u]) type e

/--
Given `e` s.t. `inferType e` is definitionally equal to `expectedType`, return
Given `e` s.t. `inferType e` is definitionally equal to `expectedType`, returns
term `@id expectedType e`. -/
def mkExpectedTypeHint (e : Expr) (expectedType : Expr) : MetaM Expr := do
let u ← getLevel expectedType
Expand All @@ -38,21 +38,21 @@ def mkLetFun (x : Expr) (v : Expr) (e : Expr) : MetaM Expr := do
let u2 ← getLevel ety
return mkAppN (.const ``letFun [u1, u2]) #[α, β, v, f]

/-- Return `a = b`. -/
/-- Returns `a = b`. -/
def mkEq (a b : Expr) : MetaM Expr := do
let aType ← inferType a
let u ← getLevel aType
return mkApp3 (mkConst ``Eq [u]) aType a b

/-- Return `HEq a b`. -/
/-- Returns `HEq a b`. -/
def mkHEq (a b : Expr) : MetaM Expr := do
let aType ← inferType a
let bType ← inferType b
let u ← getLevel aType
return mkApp4 (mkConst ``HEq [u]) aType a bType b

/--
If `a` and `b` have definitionally equal types, return `Eq a b`, otherwise return `HEq a b`.
If `a` and `b` have definitionally equal types, returns `Eq a b`, otherwise returns `HEq a b`.
-/
def mkEqHEq (a b : Expr) : MetaM Expr := do
let aType ← inferType a
Expand All @@ -63,25 +63,25 @@ def mkEqHEq (a b : Expr) : MetaM Expr := do
else
return mkApp4 (mkConst ``HEq [u]) aType a bType b

/-- Return a proof of `a = a`. -/
/-- Returns a proof of `a = a`. -/
def mkEqRefl (a : Expr) : MetaM Expr := do
let aType ← inferType a
let u ← getLevel aType
return mkApp2 (mkConst ``Eq.refl [u]) aType a

/-- Return a proof of `HEq a a`. -/
/-- Returns a proof of `HEq a a`. -/
def mkHEqRefl (a : Expr) : MetaM Expr := do
let aType ← inferType a
let u ← getLevel aType
return mkApp2 (mkConst ``HEq.refl [u]) aType a

/-- Given `hp : P` and `nhp : Not P` returns an instance of type `e`. -/
/-- Given `hp : P` and `nhp : Not P`, returns an instance of type `e`. -/
def mkAbsurd (e : Expr) (hp hnp : Expr) : MetaM Expr := do
let p ← inferType hp
let u ← getLevel e
return mkApp4 (mkConst ``absurd [u]) p e hp hnp

/-- Given `h : False`, return an instance of type `e`. -/
/-- Given `h : False`, returns an instance of type `e`. -/
def mkFalseElim (e : Expr) (h : Expr) : MetaM Expr := do
let u ← getLevel e
return mkApp2 (mkConst ``False.elim [u]) e h
Expand All @@ -108,7 +108,7 @@ def mkEqSymm (h : Expr) : MetaM Expr := do
return mkApp4 (mkConst ``Eq.symm [u]) α a b h
| none => throwAppBuilderException ``Eq.symm ("equality proof expected" ++ hasTypeMsg h hType)

/-- Given `h₁ : a = b` and `h₂ : b = c` returns a proof of `a = c`. -/
/-- Given `h₁ : a = b` and `h₂ : b = c`, returns a proof of `a = c`. -/
def mkEqTrans (h₁ h₂ : Expr) : MetaM Expr := do
if h₁.isAppOf ``Eq.refl then
return h₂
Expand Down Expand Up @@ -185,7 +185,7 @@ def mkHEqOfEq (h : Expr) : MetaM Expr := do
return mkApp4 (mkConst ``heq_of_eq [u]) α a b h

/--
If `e` is `@Eq.refl α a`, return `a`.
If `e` is `@Eq.refl α a`, returns `a`.
-/
def isRefl? (e : Expr) : Option Expr := do
if e.isAppOfArity ``Eq.refl 2 then
Expand All @@ -194,7 +194,7 @@ def isRefl? (e : Expr) : Option Expr := do
none

/--
If `e` is `@congrArg α β a b f h`, return `α`, `f` and `h`.
If `e` is `@congrArg α β a b f h`, returns `α`, `f` and `h`.
Also works if `e` can be turned into such an application (e.g. `congrFun`).
-/
def congrArg? (e : Expr) : MetaM (Option (Expr × Expr × Expr)) := do
Expand Down Expand Up @@ -336,13 +336,14 @@ private def withAppBuilderTrace [ToMessageData α] [ToMessageData β]
throw ex

/--
Return the application `constName xs`.
Returns the application `constName xs`.
It tries to fill the implicit arguments before the last element in `xs`.
Remark:
``mkAppM `arbitrary #[α]`` returns `@arbitrary.{u} α` without synthesizing
the implicit argument occurring after `α`.
Given a `x : ([Decidable p] → Bool) × Nat`, ``mkAppM `Prod.fst #[x]`` returns `@Prod.fst ([Decidable p] → Bool) Nat x`.
Given a `x : ([Decidable p] → Bool) × Nat`, ``mkAppM `Prod.fst #[x]``,
returns `@Prod.fst ([Decidable p] → Bool) Nat x`.
-/
def mkAppM (constName : Name) (xs : Array Expr) : MetaM Expr := do
withAppBuilderTrace constName xs do withNewMCtxDepth do
Expand Down Expand Up @@ -465,8 +466,9 @@ def mkPure (monad : Expr) (e : Expr) : MetaM Expr :=
mkAppOptM ``Pure.pure #[monad, none, none, e]

/--
`mkProjection s fieldName` returns an expression for accessing field `fieldName` of the structure `s`.
Remark: `fieldName` may be a subfield of `s`. -/
`mkProjection s fieldName` returns an expression for accessing field `fieldName` of the structure `s`.
Remark: `fieldName` may be a subfield of `s`.
-/
partial def mkProjection (s : Expr) (fieldName : Name) : MetaM Expr := do
let type ← inferType s
let type ← whnf type
Expand Down Expand Up @@ -520,75 +522,87 @@ def mkSome (type value : Expr) : MetaM Expr := do
let u ← getDecLevel type
return mkApp2 (mkConst ``Option.some [u]) type value

/-- Return `Decidable.decide p` -/
/-- Returns `Decidable.decide p` -/
def mkDecide (p : Expr) : MetaM Expr :=
mkAppOptM ``Decidable.decide #[p, none]

/-- Return a proof for `p : Prop` using `decide p` -/
/-- Returns a proof for `p : Prop` using `decide p` -/
def mkDecideProof (p : Expr) : MetaM Expr := do
let decP ← mkDecide p
let decEqTrue ← mkEq decP (mkConst ``Bool.true)
let h ← mkEqRefl (mkConst ``Bool.true)
let h ← mkExpectedTypeHint h decEqTrue
mkAppM ``of_decide_eq_true #[h]

/-- Return `a < b` -/
/-- Returns `a < b` -/
def mkLt (a b : Expr) : MetaM Expr :=
mkAppM ``LT.lt #[a, b]

/-- Return `a <= b` -/
/-- Returns `a <= b` -/
def mkLe (a b : Expr) : MetaM Expr :=
mkAppM ``LE.le #[a, b]

/-- Return `Inhabited.default α` -/
/-- Returns `Inhabited.default α` -/
def mkDefault (α : Expr) : MetaM Expr :=
mkAppOptM ``Inhabited.default #[α, none]

/-- Return `@Classical.ofNonempty α _` -/
/-- Returns `@Classical.ofNonempty α _` -/
def mkOfNonempty (α : Expr) : MetaM Expr := do
mkAppOptM ``Classical.ofNonempty #[α, none]

/-- Return `funext h` -/
/-- Returns `funext h` -/
def mkFunExt (h : Expr) : MetaM Expr :=
mkAppM ``funext #[h]

/-- Return `propext h` -/
/-- Returns `propext h` -/
def mkPropExt (h : Expr) : MetaM Expr :=
mkAppM ``propext #[h]

/-- Return `let_congr h₁ h₂` -/
/-- Returns `let_congr h₁ h₂` -/
def mkLetCongr (h₁ h₂ : Expr) : MetaM Expr :=
mkAppM ``let_congr #[h₁, h₂]

/-- Return `let_val_congr b h` -/
/-- Returns `let_val_congr b h` -/
def mkLetValCongr (b h : Expr) : MetaM Expr :=
mkAppM ``let_val_congr #[b, h]

/-- Return `let_body_congr a h` -/
/-- Returns `let_body_congr a h` -/
def mkLetBodyCongr (a h : Expr) : MetaM Expr :=
mkAppM ``let_body_congr #[a, h]

/-- Return `of_eq_true h` -/
/-- Returns `@of_eq_true p h` -/
def mkOfEqTrueCore (p : Expr) (h : Expr) : Expr :=
match_expr h with
| eq_true _ h => h
| _ => mkApp2 (mkConst ``of_eq_true) p h

/-- Returns `of_eq_true h` -/
def mkOfEqTrue (h : Expr) : MetaM Expr := do
match_expr h with
| eq_true _ h => return h
| _ => mkAppM ``of_eq_true #[h]

/-- Return `eq_true h` -/
/-- Returns `eq_true h` -/
def mkEqTrueCore (p : Expr) (h : Expr) : Expr :=
match_expr h with
| of_eq_true _ h => h
| _ => mkApp2 (mkConst ``eq_true) p h

/-- Returns `eq_true h` -/
def mkEqTrue (h : Expr) : MetaM Expr := do
match_expr h with
| of_eq_true _ h => return h
| _ => return mkApp2 (mkConst ``eq_true) (← inferType h) h

/--
Return `eq_false h`
Returns `eq_false h`
`h` must have type definitionally equal to `¬ p` in the current
reducibility setting. -/
def mkEqFalse (h : Expr) : MetaM Expr :=
mkAppM ``eq_false #[h]

/--
Return `eq_false' h`
Returns `eq_false' h`
`h` must have type definitionally equal to `p → False` in the current
reducibility setting. -/
def mkEqFalse' (h : Expr) : MetaM Expr :=
Expand All @@ -606,7 +620,7 @@ def mkImpDepCongrCtx (h₁ h₂ : Expr) : MetaM Expr :=
def mkForallCongr (h : Expr) : MetaM Expr :=
mkAppM ``forall_congr #[h]

/-- Return instance for `[Monad m]` if there is one -/
/-- Returns instance for `[Monad m]` if there is one -/
def isMonad? (m : Expr) : MetaM (Option Expr) :=
try
let monadType ← mkAppM `Monad #[m]
Expand All @@ -617,52 +631,52 @@ def isMonad? (m : Expr) : MetaM (Option Expr) :=
catch _ =>
pure none

/-- Return `(n : type)`, a numeric literal of type `type`. The method fails if we don't have an instance `OfNat type n` -/
/-- Returns `(n : type)`, a numeric literal of type `type`. The method fails if we don't have an instance `OfNat type n` -/
def mkNumeral (type : Expr) (n : Nat) : MetaM Expr := do
let u ← getDecLevel type
let inst ← synthInstance (mkApp2 (mkConst ``OfNat [u]) type (mkRawNatLit n))
return mkApp3 (mkConst ``OfNat.ofNat [u]) type (mkRawNatLit n) inst

/--
Return `a op b`, where `op` has name `opName` and is implemented using the typeclass `className`.
This method assumes `a` and `b` have the same type, and typeclass `className` is heterogeneous.
Examples of supported classes: `HAdd`, `HSub`, `HMul`.
We use heterogeneous operators to ensure we have a uniform representation.
-/
Returns `a op b`, where `op` has name `opName` and is implemented using the typeclass `className`.
This method assumes `a` and `b` have the same type, and typeclass `className` is heterogeneous.
Examples of supported classes: `HAdd`, `HSub`, `HMul`.
We use heterogeneous operators to ensure we have a uniform representation.
-/
private def mkBinaryOp (className : Name) (opName : Name) (a b : Expr) : MetaM Expr := do
let aType ← inferType a
let u ← getDecLevel aType
let inst ← synthInstance (mkApp3 (mkConst className [u, u, u]) aType aType aType)
return mkApp6 (mkConst opName [u, u, u]) aType aType aType inst a b

/-- Return `a + b` using a heterogeneous `+`. This method assumes `a` and `b` have the same type. -/
/-- Returns `a + b` using a heterogeneous `+`. This method assumes `a` and `b` have the same type. -/
def mkAdd (a b : Expr) : MetaM Expr := mkBinaryOp ``HAdd ``HAdd.hAdd a b

/-- Return `a - b` using a heterogeneous `-`. This method assumes `a` and `b` have the same type. -/
/-- Returns `a - b` using a heterogeneous `-`. This method assumes `a` and `b` have the same type. -/
def mkSub (a b : Expr) : MetaM Expr := mkBinaryOp ``HSub ``HSub.hSub a b

/-- Return `a * b` using a heterogeneous `*`. This method assumes `a` and `b` have the same type. -/
/-- Returns `a * b` using a heterogeneous `*`. This method assumes `a` and `b` have the same type. -/
def mkMul (a b : Expr) : MetaM Expr := mkBinaryOp ``HMul ``HMul.hMul a b

/--
Return `a r b`, where `r` has name `rName` and is implemented using the typeclass `className`.
This method assumes `a` and `b` have the same type.
Examples of supported classes: `LE` and `LT`.
We use heterogeneous operators to ensure we have a uniform representation.
-/
Returns `a r b`, where `r` has name `rName` and is implemented using the typeclass `className`.
This method assumes `a` and `b` have the same type.
Examples of supported classes: `LE` and `LT`.
We use heterogeneous operators to ensure we have a uniform representation.
-/
private def mkBinaryRel (className : Name) (rName : Name) (a b : Expr) : MetaM Expr := do
let aType ← inferType a
let u ← getDecLevel aType
let inst ← synthInstance (mkApp (mkConst className [u]) aType)
return mkApp4 (mkConst rName [u]) aType inst a b

/-- Return `a ≤ b`. This method assumes `a` and `b` have the same type. -/
/-- Returns `a ≤ b`. This method assumes `a` and `b` have the same type. -/
def mkLE (a b : Expr) : MetaM Expr := mkBinaryRel ``LE ``LE.le a b

/-- Return `a < b`. This method assumes `a` and `b` have the same type. -/
/-- Returns `a < b`. This method assumes `a` and `b` have the same type. -/
def mkLT (a b : Expr) : MetaM Expr := mkBinaryRel ``LT ``LT.lt a b

/-- Given `h : a = b`, return a proof for `a ↔ b`. -/
/-- Given `h : a = b`, returns a proof for `a ↔ b`. -/
def mkIffOfEq (h : Expr) : MetaM Expr := do
if h.isAppOfArity ``propext 3 then
return h.appArg!
Expand Down
5 changes: 3 additions & 2 deletions src/Lean/Meta/Tactic/Grind/Arith/ProofUtil.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ Authors: Leonardo de Moura
-/
prelude
import Init.Grind.Offset
import Init.Grind.Lemmas
import Lean.Meta.Tactic.Grind.Types

namespace Lean.Meta.Grind.Arith
Expand All @@ -15,8 +16,8 @@ Helper functions for constructing proof terms in the arithmetic procedures.

namespace Offset

/-- `Eq.refl true` -/
def rfl_true : Expr := mkApp2 (mkConst ``Eq.refl [levelOne]) (mkConst ``Bool) (mkConst ``Bool.true)
/-- Returns a proof for `true = true` -/
def rfl_true : Expr := mkConst ``Grind.rfl_true

open Lean.Grind in
/--
Expand Down
4 changes: 2 additions & 2 deletions src/Lean/Meta/Tactic/Grind/ForallProp.lean
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ def propagateForallPropUp (e : Expr) : GoalM Unit := do
unless (← isEqTrue p) do return
trace_goal[grind.debug.forallPropagator] "isEqTrue, {e}"
let h₁ ← mkEqTrueProof p
let qh₁ := q.instantiate1 (mkApp2 (mkConst ``of_eq_true) p h₁)
let qh₁ := q.instantiate1 (mkOfEqTrueCore p h₁)
let r ← simp qh₁
let q := mkLambda n bi p q
let q' := r.expr
Expand Down Expand Up @@ -65,7 +65,7 @@ private def addLocalEMatchTheorems (e : Expr) : GoalM Unit := do
else
let idx ← modifyGet fun s => (s.nextThmIdx, { s with nextThmIdx := s.nextThmIdx + 1 })
pure <| .local ((`local).appendIndexAfter idx)
let proof := mkApp2 (mkConst ``of_eq_true) e proof
let proof := mkOfEqTrueCore e proof
let size := (← get).newThms.size
let gen ← getGeneration e
-- TODO: we should have a flag for collecting all unary patterns in a local theorem
Expand Down
Loading

0 comments on commit af8f3d1

Please sign in to comment.