Skip to content

Commit

Permalink
feat: improve inequality offset support theorems for grind
Browse files Browse the repository at this point in the history
This PR improves the theorems used to justify the steps performed by
the inequality offset module. See new test for examples of how they are
going to be used.
  • Loading branch information
leodemoura committed Jan 9, 2025
1 parent a6789a7 commit de2f4e2
Show file tree
Hide file tree
Showing 2 changed files with 88 additions and 24 deletions.
81 changes: 57 additions & 24 deletions src/Init/Grind/Offset.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ prelude
import Init.Core
import Init.Omega

namespace Lean.Grind
namespace Lean.Grind.Offset

abbrev Var := Nat
abbrev Context := Lean.RArray Nat
Expand All @@ -22,7 +22,7 @@ structure Cnstr where
y : Var
k : Nat := 0
l : Bool := true
deriving Repr, BEq, Inhabited
deriving Repr, DecidableEq, Inhabited

def Cnstr.denote (c : Cnstr) (ctx : Context) : Prop :=
if c.l then
Expand Down Expand Up @@ -82,51 +82,84 @@ def Cnstr.isFalse (c : Cnstr) : Bool := c.x == c.y && c.k != 0 && c.l == true
theorem Cnstr.of_isFalse (ctx : Context) {c : Cnstr} : c.isFalse = true → ¬c.denote ctx := by
cases c; simp [isFalse]; intros; simp [*, denote]; omega

def Certificate := List Cnstr
def Cnstrs := List Cnstr

def Certificate.denote' (ctx : Context) (c₁ : Cnstr) (c₂ : Certificate) : Prop :=
def Cnstrs.denoteAnd' (ctx : Context) (c₁ : Cnstr) (c₂ : Cnstrs) : Prop :=
match c₂ with
| [] => c₁.denote ctx
| c::cs => c₁.denote ctx ∧ Certificate.denote' ctx c cs
| c::cs => c₁.denote ctx ∧ Cnstrs.denoteAnd' ctx c cs

theorem Certificate.denote'_trans (ctx : Context) (c₁ c : Cnstr) (cs : Certificate) : c₁.denote ctx → denote' ctx c cs → denote' ctx (c₁.trans c) cs := by
theorem Cnstrs.denote'_trans (ctx : Context) (c₁ c : Cnstr) (cs : Cnstrs) : c₁.denote ctx → denoteAnd' ctx c cs → denoteAnd' ctx (c₁.trans c) cs := by
induction cs
next => simp [denote', *]; apply Cnstr.denote_trans
next c cs ih => simp [denote']; intros; simp [*]
next => simp [denoteAnd', *]; apply Cnstr.denote_trans
next c cs ih => simp [denoteAnd']; intros; simp [*]

def Certificate.trans' (c₁ : Cnstr) (c₂ : Certificate) : Cnstr :=
def Cnstrs.trans' (c₁ : Cnstr) (c₂ : Cnstrs) : Cnstr :=
match c₂ with
| [] => c₁
| c::c₂ => trans' (c₁.trans c) c₂

@[simp] theorem Certificate.denote'_trans' (ctx : Context) (c₁ : Cnstr) (c₂ : Certificate) : denote' ctx c₁ c₂ → (trans' c₁ c₂).denote ctx := by
@[simp] theorem Cnstrs.denote'_trans' (ctx : Context) (c₁ : Cnstr) (c₂ : Cnstrs) : denoteAnd' ctx c₁ c₂ → (trans' c₁ c₂).denote ctx := by
induction c₂ generalizing c₁
next => intros; simp_all [trans', denote']
next c cs ih => simp [denote']; intros; simp [trans']; apply ih; apply denote'_trans <;> assumption
next => intros; simp_all [trans', denoteAnd']
next c cs ih => simp [denoteAnd']; intros; simp [trans']; apply ih; apply denote'_trans <;> assumption

def Certificate.denote (ctx : Context) (c : Certificate) : Prop :=
def Cnstrs.denoteAnd (ctx : Context) (c : Cnstrs) : Prop :=
match c with
| [] => True
| c::cs => denote' ctx c cs
| c::cs => denoteAnd' ctx c cs

def Certificate.trans (c : Certificate) : Cnstr :=
def Cnstrs.trans (c : Cnstrs) : Cnstr :=
match c with
| [] => trivialCnstr
| c::cs => trans' c cs

theorem Certificate.denote_trans {ctx : Context} {c : Certificate} : c.denote ctx → c.trans.denote ctx := by
cases c <;> simp [*, trans, Certificate.denote] <;> intros <;> simp [*]
theorem Cnstrs.of_denoteAnd_trans {ctx : Context} {c : Cnstrs} : c.denoteAnd ctx → c.trans.denote ctx := by
cases c <;> simp [*, trans, denoteAnd] <;> intros <;> simp [*]

def Certificate.isFalse (c : Certificate) : Bool :=
def Cnstrs.isFalse (c : Cnstrs) : Bool :=
c.trans.isFalse

theorem Certificate.unsat (ctx : Context) (c : Certificate) : c.isFalse = true → ¬ c.denote ctx := by
theorem Cnstrs.unsat' (ctx : Context) (c : Cnstrs) : c.isFalse = true → ¬ c.denoteAnd ctx := by
simp [isFalse]; intro h₁ h₂
have := Certificate.denote_trans h₂
have := of_denoteAnd_trans h₂
have := Cnstr.of_isFalse ctx h₁
contradiction

theorem Certificate.imp (ctx : Context) (c : Certificate) : c.denote ctx → c.trans.denote ctx := by
apply denote_trans

end Lean.Grind
/-- Returns `c_1 → ... → c_n → C -/
def Cnstrs.denote (ctx : Context) (cs : Cnstrs) (C : Prop) : Prop :=
match cs with
| [] => C
| c::cs => c.denote ctx → denote ctx cs C

theorem Cnstrs.not_denoteAnd'_eq (ctx : Context) (c : Cnstr) (cs : Cnstrs) (C : Prop) : (denoteAnd' ctx c cs → C) = denote ctx (c::cs) C := by
simp [denote]
induction cs generalizing c
next => simp [denoteAnd', denote]
next c' cs ih =>
simp [denoteAnd', denote, *]

theorem Cnstrs.not_denoteAnd_eq (ctx : Context) (cs : Cnstrs) (C : Prop) : (denoteAnd ctx cs → C) = denote ctx cs C := by
cases cs
next => simp [denoteAnd, denote]
next c cs => apply not_denoteAnd'_eq

def Cnstr.isImpliedBy (cs : Cnstrs) (c : Cnstr) : Bool :=
cs.trans == c

/-! Main theorems used by `grind`. -/

/-- Auxiliary theorem used by `grind` to prove that a system of offset inequalities is unsatisfiable. -/
theorem Cnstrs.unsat (ctx : Context) (cs : Cnstrs) : cs.isFalse = true → cs.denote ctx False := by
intro h
rw [← not_denoteAnd_eq]
apply unsat'
assumption

/-- Auxiliary theorem used by `grind` to prove an implied offset inequality. -/
theorem Cnstrs.imp (ctx : Context) (cs : Cnstrs) (c : Cnstr) (h : c.isImpliedBy cs = true) : cs.denote ctx (c.denote ctx) := by
rw [← eq_of_beq h]
rw [← not_denoteAnd_eq]
apply of_denoteAnd_trans

end Lean.Grind.Offset
31 changes: 31 additions & 0 deletions tests/lean/run/grind_offset_ineq_thms.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
import Lean

elab tk:"#R[" ts:term,* "]" : term => do
let ts : Array Lean.Syntax := ts
let es ← ts.mapM fun stx => Lean.Elab.Term.elabTerm stx none
if h : 0 < es.size then
return (Lean.RArray.toExpr (← Lean.Meta.inferType es[0]!) id (Lean.RArray.ofArray es h))
else
throwErrorAt tk "RArray cannot be empty"

open Lean.Grind.Offset

macro "C[" "#" x:term:max " ≤ " "#" y:term:max "]" : term => `({ x := $x, y := $y : Cnstr })
macro "C[" "#" x:term:max " + " k:term:max " ≤ " "#" y:term:max "]" : term => `({ x := $x, y := $y, k := $k : Cnstr })
macro "C[" "#" x:term:max " ≤ " "#"y:term:max " + " k:term:max "]" : term => `({ x := $x, y := $y, k := $k, l := false : Cnstr })

example (x y z : Nat) : x + 2 ≤ y → y ≤ z → z + 1 ≤ x → False :=
Cnstrs.unsat #R[x, y, z] [
C[ #0 + 2 ≤ #1 ],
C[ #1 ≤ #2 ],
C[ #2 + 1 ≤ #0 ]
] rfl

example (x y z w : Nat) : x + 2 ≤ y → y ≤ z → z ≤ w + 7 → x ≤ w + 5 :=
Cnstrs.imp #R[x, y, z, w] [
C[ #0 + 2 ≤ #1 ],
C[ #1 ≤ #2 ],
C[ #2 ≤ #3 + 7]
]
C[ #0 ≤ #3 + 5 ]
rfl

0 comments on commit de2f4e2

Please sign in to comment.