Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat: add @[simp] lemma Prod.norm_mk #20411

Closed
wants to merge 3 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 12 additions & 2 deletions Mathlib/Analysis/Normed/Group/Constructions.lean
Original file line number Diff line number Diff line change
Expand Up @@ -229,6 +229,8 @@ instance Prod.toNorm : Norm (E × F) where norm x := ‖x.1‖ ⊔ ‖x.2‖

lemma Prod.norm_def (x : E × F) : ‖x‖ = max ‖x.1‖ ‖x.2‖ := rfl

@[simp] lemma Prod.norm_mk (x : E) (y : F) : ‖(x, y)‖ = max ‖x‖ ‖y‖ := rfl
vihdzp marked this conversation as resolved.
Show resolved Hide resolved

lemma norm_fst_le (x : E × F) : ‖x.1‖ ≤ ‖x‖ := le_max_left _ _

lemma norm_snd_le (x : E × F) : ‖x.2‖ ≤ ‖x‖ := le_max_right _ _
Expand All @@ -246,8 +248,16 @@ instance Prod.seminormedGroup : SeminormedGroup (E × F) where
dist_eq x y := by
simp only [Prod.norm_def, Prod.dist_eq, dist_eq_norm_div, Prod.fst_div, Prod.snd_div]

@[to_additive Prod.nnnorm_def']
lemma Prod.nnorm_def (x : E × F) : ‖x‖₊ = max ‖x.1‖₊ ‖x.2‖₊ := rfl
/-- Multiplicative version of `Prod.nnnorm_def`.
Earlier, this names was used for the additive version. -/
@[to_additive Prod.nnnorm_def]
lemma Prod.nnnorm_def' (x : E × F) : ‖x‖₊ = max ‖x.1‖₊ ‖x.2‖₊ := rfl

@[deprecated (since := "2025-01-02")] alias Prod.nnorm_def := Prod.nnnorm_def'

/-- Multiplicative version of `Prod.nnnorm_mk`. -/
@[to_additive (attr := simp) Prod.nnnorm_mk]
lemma Prod.nnnorm_mk' (x : E) (y : F) : ‖(x, y)‖₊ = max ‖x‖₊ ‖y‖₊ := rfl

end SeminormedGroup

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Analysis/Normed/Lp/ProdLp.lean
Original file line number Diff line number Diff line change
Expand Up @@ -616,7 +616,7 @@ theorem prod_nnnorm_eq_sup (f : WithLp ∞ (α × β)) : ‖f‖₊ = ‖f.fst
norm_cast

@[simp] theorem prod_nnnorm_equiv (f : WithLp ∞ (α × β)) : ‖WithLp.equiv ⊤ _ f‖₊ = ‖f‖₊ := by
rw [prod_nnnorm_eq_sup, Prod.nnnorm_def', equiv_fst, equiv_snd]
rw [prod_nnnorm_eq_sup, Prod.nnnorm_def, equiv_fst, equiv_snd]

@[simp] theorem prod_nnnorm_equiv_symm (f : α × β) : ‖(WithLp.equiv ⊤ _).symm f‖₊ = ‖f‖₊ :=
(prod_nnnorm_equiv _).symm
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Analysis/NormedSpace/Multilinear/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -577,7 +577,7 @@ theorem isLeast_opNNNorm (f : ContinuousMultilinearMap 𝕜 E G) :
theorem opNNNorm_prod (f : ContinuousMultilinearMap 𝕜 E G) (g : ContinuousMultilinearMap 𝕜 E G') :
‖f.prod g‖₊ = max ‖f‖₊ ‖g‖₊ :=
eq_of_forall_ge_iff fun _ ↦ by
simp only [opNNNorm_le_iff, prod_apply, Prod.nnnorm_def', max_le_iff, forall_and]
simp only [opNNNorm_le_iff, prod_apply, Prod.nnnorm_def, max_le_iff, forall_and]

@[deprecated (since := "2024-02-02")] alias op_nnnorm_prod := opNNNorm_prod

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -388,7 +388,7 @@ theorem nnnorm_eq_sup_normAtPlace (x : mixedSpace K) :
(univ.image (fun w : {w : InfinitePlace K // IsComplex w} ↦ w.1)) := by
ext; simp [isReal_or_isComplex]
rw [this, sup_union, univ.sup_image, univ.sup_image,
Prod.nnnorm_def', Pi.nnnorm_def, Pi.nnnorm_def]
Prod.nnnorm_def, Pi.nnnorm_def, Pi.nnnorm_def]
congr
· ext w
simp [normAtPlace_apply_isReal w.prop]
Expand Down
Loading