Skip to content

Commit

Permalink
feat(Data/List/Chain): chain'_attachWith (#18429)
Browse files Browse the repository at this point in the history
  • Loading branch information
vihdzp authored and grunweg committed Nov 2, 2024
1 parent f000b64 commit e9685df
Showing 1 changed file with 20 additions and 0 deletions.
20 changes: 20 additions & 0 deletions Mathlib/Data/List/Chain.lean
Original file line number Diff line number Diff line change
Expand Up @@ -319,6 +319,26 @@ lemma chain'_join : ∀ {L : List (List α)}, [] ∉ L →
simp only [forall_mem_cons, and_assoc, join, head?_append_of_ne_nil _ hL.2.1.symm]
exact Iff.rfl.and (Iff.rfl.and <| Iff.rfl.and and_comm)

theorem chain'_attachWith {l : List α} {p : α → Prop} (h : ∀ x ∈ l, p x)
{r : {a // p a} → {a // p a} → Prop} :
(l.attachWith p h).Chain' r ↔ l.Chain' fun a b ↦ ∃ ha hb, r ⟨a, ha⟩ ⟨b, hb⟩ := by
induction l with
| nil => rfl
| cons a l IH =>
rw [attachWith_cons, chain'_cons', chain'_cons', IH, and_congr_left]
simp_rw [head?_attachWith]
intros
constructor <;>
intro hc b (hb : _ = _)
· simp_rw [hb, Option.pbind_some] at hc
have hb' := h b (mem_cons_of_mem a (mem_of_mem_head? hb))
exact ⟨h a (mem_cons_self a l), hb', hc ⟨b, hb'⟩ rfl⟩
· cases l <;> aesop

theorem chain'_attach {l : List α} {r : {a // a ∈ l} → {a // a ∈ l} → Prop} :
l.attach.Chain' r ↔ l.Chain' fun a b ↦ ∃ ha hb, r ⟨a, ha⟩ ⟨b, hb⟩ :=
chain'_attachWith fun _ ↦ id

/-- If `a` and `b` are related by the reflexive transitive closure of `r`, then there is an
`r`-chain starting from `a` and ending on `b`.
The converse of `relationReflTransGen_of_exists_chain`.
Expand Down

0 comments on commit e9685df

Please sign in to comment.