Skip to content

Commit

Permalink
feat: port Algebra.Order.AbsoluteValue again (#3448)
Browse files Browse the repository at this point in the history
Co-authored-by: Yury G. Kudryashov <[email protected]>
  • Loading branch information
Ruben-VandeVelde and urkud committed Jun 15, 2023
1 parent 37e61f4 commit dd52d5f
Showing 1 changed file with 45 additions and 45 deletions.
90 changes: 45 additions & 45 deletions Mathlib/Algebra/Order/AbsoluteValue.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Anne Baanen
! This file was ported from Lean 3 source module algebra.order.absolute_value
! leanprover-community/mathlib commit fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e
! leanprover-community/mathlib commit 0013240bce820e3096cebb7ccf6d17e3f35f77ca
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
Expand All @@ -16,6 +16,9 @@ import Mathlib.Algebra.Ring.Regular
/-!
# Absolute values
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
This file defines a bundled type of absolute values `AbsoluteValue R S`.
## Main definitions
Expand All @@ -42,8 +45,7 @@ structure AbsoluteValue (R S : Type _) [Semiring R] [OrderedSemiring S] extends

namespace AbsoluteValue

-- Porting note: Removing nolints.
-- attribute [nolint doc_blame] AbsoluteValue.toMulHom
attribute [nolint docBlame] AbsoluteValue.toMulHom

section OrderedSemiring

Expand All @@ -53,10 +55,7 @@ variable {R S : Type _} [Semiring R] [OrderedSemiring S] (abv : AbsoluteValue R

instance zeroHomClass : ZeroHomClass (AbsoluteValue R S) R S where
coe f := f.toFun
coe_injective' f g h := by
obtain ⟨⟨_, _⟩, _⟩ := f
obtain ⟨⟨_, _⟩, _⟩ := g
congr
coe_injective' f g h := by obtain ⟨⟨_, _⟩, _⟩ := f; obtain ⟨⟨_, _⟩, _⟩ := g; congr
map_zero f := (f.eq_zero' _).2 rfl
#align absolute_value.zero_hom_class AbsoluteValue.zeroHomClass

Expand All @@ -83,20 +82,19 @@ theorem ext ⦃f g : AbsoluteValue R S⦄ : (∀ x, f x = g x) → f = g :=
#align absolute_value.ext AbsoluteValue.ext

/-- See Note [custom simps projection]. -/
def Simps.apply (f : AbsoluteValue R S) : R → S := f
def Simps.apply (f : AbsoluteValue R S) : R → S :=
f
#align absolute_value.simps.apply AbsoluteValue.Simps.apply

initialize_simps_projections AbsoluteValue (toFun → apply)
initialize_simps_projections AbsoluteValue (toMulHom_toFun → apply)

-- Porting note:
-- These helper instances are unhelpful in Lean 4, so omitting:
-- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`
-- directly. -/
-- instance : CoeFun (AbsoluteValue R S) fun f => R → S :=
-- FunLike.hasCoeToFun
/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`
directly. -/
instance : CoeFun (AbsoluteValue R S) fun _ => R → S :=
FunLike.hasCoeToFun

@[simp]
theorem coe_toMulHom : abv.toMulHom = abv :=
theorem coe_toMulHom : abv.toMulHom = abv :=
rfl
#align absolute_value.coe_to_mul_hom AbsoluteValue.coe_toMulHom

Expand All @@ -113,11 +111,10 @@ protected theorem add_le (x y : R) : abv (x + y) ≤ abv x + abv y :=
abv.add_le' x y
#align absolute_value.add_le AbsoluteValue.add_le

-- Porting note: Removed since `map_mul` proves the theorem
--@[simp]
--protected theorem map_mul (x y : R) : abv (x * y) = abv x * abv y := map_mul _ _ _
--abv.map_mul' x y
#align absolute_value.map_mul map_mul
-- porting note: was `@[simp]` but `simp` can prove it
protected theorem map_mul (x y : R) : abv (x * y) = abv x * abv y :=
abv.map_mul' x y
#align absolute_value.map_mul AbsoluteValue.map_mul

protected theorem ne_zero_iff {x : R} : abv x ≠ 0 ↔ x ≠ 0 :=
abv.eq_zero.not
Expand All @@ -137,14 +134,13 @@ protected theorem ne_zero {x : R} (hx : x ≠ 0) : abv x ≠ 0 :=
#align absolute_value.ne_zero AbsoluteValue.ne_zero

theorem map_one_of_isLeftRegular (h : IsLeftRegular (abv 1)) : abv 1 = 1 :=
h <| by simp [← map_mul]
h <| by simp [← abv.map_mul]
#align absolute_value.map_one_of_is_regular AbsoluteValue.map_one_of_isLeftRegular

-- Porting note: Removed since `map_zero` proves the theorem
--@[simp]
--protected theorem map_zero : abv 0 = 0 := map_zero _
--abv.eq_zero.2 rfl
#align absolute_value.map_zero map_zero
-- porting note: was `@[simp]` but `simp` can prove it
protected theorem map_zero : abv 0 = 0 :=
abv.eq_zero.2 rfl
#align absolute_value.map_zero AbsoluteValue.map_zero

end Semiring

Expand All @@ -156,7 +152,7 @@ protected theorem sub_le (a b c : R) : abv (a - c) ≤ abv (a - b) + abv (b - c)
simpa [sub_eq_add_neg, add_assoc] using abv.add_le (a - b) (b - c)
#align absolute_value.sub_le AbsoluteValue.sub_le

@[simp (high)]
@[simp high] -- porting note: added `high` to apply it before `abv.eq_zero`
theorem map_sub_eq_zero_iff (a b : R) : abv (a - b) = 0 ↔ a = b :=
abv.eq_zero.trans sub_eq_zero
#align absolute_value.map_sub_eq_zero_iff AbsoluteValue.map_sub_eq_zero_iff
Expand All @@ -177,13 +173,15 @@ variable {R S : Type _} [Semiring R] [OrderedRing S] (abv : AbsoluteValue R S)

variable [IsDomain S] [Nontrivial R]

@[simp (high)]
-- porting note: was `@[simp]` but `simp` can prove it
protected theorem map_one : abv 1 = 1 :=
abv.map_one_of_isLeftRegular (isRegular_of_ne_zero <| abv.ne_zero one_ne_zero).left
#align absolute_value.map_one AbsoluteValue.map_one

instance : MonoidWithZeroHomClass (AbsoluteValue R S) R S :=
{ AbsoluteValue.mulHomClass with map_zero := fun f => map_zero f, map_one := fun f => f.map_one }
instance monoidWithZeroHomClass : MonoidWithZeroHomClass (AbsoluteValue R S) R S :=
{ AbsoluteValue.mulHomClass with
map_zero := fun f => f.map_zero
map_one := fun f => f.map_one }

/-- Absolute values from a nontrivial `R` to a linear ordered ring preserve `*`, `0` and `1`. -/
def toMonoidWithZeroHom : R →*₀ S :=
Expand All @@ -205,11 +203,10 @@ theorem coe_toMonoidHom : ⇑abv.toMonoidHom = abv :=
rfl
#align absolute_value.coe_to_monoid_hom AbsoluteValue.coe_toMonoidHom

-- Porting note: Removed since `map_zero` proves the theorem
--@[simp]
--protected theorem map_pow (a : R) (n : ℕ) : abv (a ^ n) = abv a ^ n := map_pow _ _ _
--abv.toMonoidHom.map_pow a n
#align absolute_value.map_pow map_pow
-- porting note: was `@[simp]` but `simp` can prove it
protected theorem map_pow (a : R) (n : ℕ) : abv (a ^ n) = abv a ^ n :=
abv.toMonoidHom.map_pow a n
#align absolute_value.map_pow AbsoluteValue.map_pow

end IsDomain

Expand Down Expand Up @@ -237,7 +234,7 @@ variable [NoZeroDivisors S]
protected theorem map_neg (a : R) : abv (-a) = abv a := by
by_cases ha : a = 0; · simp [ha]
refine'
(mul_self_eq_mul_self_iff.mp (by rw [← map_mul abv, neg_mul_neg, map_mul abv])).resolve_right _
(mul_self_eq_mul_self_iff.mp (by rw [← abv.map_mul, neg_mul_neg, abv.map_mul])).resolve_right _
exact ((neg_lt_zero.mpr (abv.pos ha)).trans (abv.pos (neg_ne_zero.mpr ha))).ne'
#align absolute_value.map_neg AbsoluteValue.map_neg

Expand All @@ -246,6 +243,13 @@ protected theorem map_sub (a b : R) : abv (a - b) = abv (b - a) := by rw [← ne

end OrderedCommRing

instance {R S : Type _} [Ring R] [OrderedCommRing S] [Nontrivial R] [IsDomain S] :
MulRingNormClass (AbsoluteValue R S) R S :=
{ AbsoluteValue.subadditiveHomClass,
AbsoluteValue.monoidWithZeroHomClass with
map_neg_eq_map := fun f => f.map_neg
eq_zero_of_map_eq_zero := fun f _ => f.eq_zero.1 }

section LinearOrderedRing

variable {R S : Type _} [Semiring R] [LinearOrderedRing S] (abv : AbsoluteValue R S)
Expand All @@ -259,8 +263,6 @@ protected def abs : AbsoluteValue S S where
add_le' := abs_add
map_mul' := abs_mul
#align absolute_value.abs AbsoluteValue.abs
#align absolute_value.abs_apply AbsoluteValue.abs_apply
#align absolute_value.abs_to_mul_hom_apply AbsoluteValue.abs_apply

instance : Inhabited (AbsoluteValue S S) :=
⟨AbsoluteValue.abs⟩
Expand All @@ -284,6 +286,7 @@ end AbsoluteValue

/-- A function `f` is an absolute value if it is nonnegative, zero only at 0, additive, and
multiplicative.
See also the type `AbsoluteValue` which represents a bundled version of absolute values.
-/
class IsAbsoluteValue {S} [OrderedSemiring S] {R} [Semiring R] (f : R → S) : Prop where
Expand Down Expand Up @@ -326,8 +329,7 @@ lemma abv_mul (x y) : abv (x * y) = abv x * abv y := abv_mul' x y
#align is_absolute_value.abv_mul IsAbsoluteValue.abv_mul

/-- A bundled absolute value is an absolute value. -/
instance _root_.AbsoluteValue.isAbsoluteValue (abv : AbsoluteValue R S) :
IsAbsoluteValue abv where
instance _root_.AbsoluteValue.isAbsoluteValue (abv : AbsoluteValue R S) : IsAbsoluteValue abv where
abv_nonneg' := abv.nonneg
abv_eq_zero' := abv.eq_zero
abv_add' := abv.add_le
Expand All @@ -343,11 +345,9 @@ def toAbsoluteValue : AbsoluteValue R S where
nonneg' := abv_nonneg'
map_mul' := abv_mul'
#align is_absolute_value.to_absolute_value IsAbsoluteValue.toAbsoluteValue
#align is_absolute_value.to_absolute_value_apply IsAbsoluteValue.toAbsoluteValue_apply
#align is_absolute_value.to_absolute_value_to_mul_hom_apply IsAbsoluteValue.toAbsoluteValue_apply

theorem abv_zero : abv 0 = 0 :=
map_zero (toAbsoluteValue abv)
(toAbsoluteValue abv).map_zero
#align is_absolute_value.abv_zero IsAbsoluteValue.abv_zero

theorem abv_pos {a : R} : 0 < abv a ↔ a ≠ 0 :=
Expand Down Expand Up @@ -387,7 +387,7 @@ def abvHom [Nontrivial R] : R →*₀ S :=

theorem abv_pow [Nontrivial R] (abv : R → S) [IsAbsoluteValue abv] (a : R) (n : ℕ) :
abv (a ^ n) = abv a ^ n :=
map_pow (toAbsoluteValue abv) a n
(toAbsoluteValue abv).map_pow a n
#align is_absolute_value.abv_pow IsAbsoluteValue.abv_pow

end Semiring
Expand Down

0 comments on commit dd52d5f

Please sign in to comment.