Skip to content

Commit

Permalink
feat(FTaylorSeries): add lemmas about dist between 0th and 1st deri…
Browse files Browse the repository at this point in the history
…vs (#20089)

These lemmas are useful to specialize conditions like $$C^{k+\alpha}$$
to low order derivatives.
  • Loading branch information
urkud committed Jan 7, 2025
1 parent 3e203da commit aca5199
Showing 1 changed file with 23 additions and 1 deletion.
24 changes: 23 additions & 1 deletion Mathlib/Analysis/Calculus/ContDiff/FTaylorSeries.lean
Original file line number Diff line number Diff line change
Expand Up @@ -412,9 +412,14 @@ theorem iteratedFDerivWithin_zero_eq_comp :
iteratedFDerivWithin 𝕜 0 f s = (continuousMultilinearCurryFin0 𝕜 E F).symm ∘ f :=
rfl

@[simp]
theorem dist_iteratedFDerivWithin_zero (f : E → F) (s : Set E) (x : E)
(g : E → F) (t : Set E) (y : E) :
dist (iteratedFDerivWithin 𝕜 0 f s x) (iteratedFDerivWithin 𝕜 0 g t y) = dist (f x) (g y) := by
simp only [iteratedFDerivWithin_zero_eq_comp, comp_apply, LinearIsometryEquiv.dist_map]

@[simp]
theorem norm_iteratedFDerivWithin_zero : ‖iteratedFDerivWithin 𝕜 0 f s x‖ = ‖f x‖ := by
-- Porting note: added `comp_apply`.
rw [iteratedFDerivWithin_zero_eq_comp, comp_apply, LinearIsometryEquiv.norm_map]

theorem iteratedFDerivWithin_succ_apply_left {n : ℕ} (m : Fin (n + 1) → E) :
Expand Down Expand Up @@ -442,6 +447,23 @@ theorem norm_fderivWithin_iteratedFDerivWithin {n : ℕ} :
-- Porting note: added `comp_apply`.
rw [iteratedFDerivWithin_succ_eq_comp_left, comp_apply, LinearIsometryEquiv.norm_map]

@[simp]
theorem dist_iteratedFDerivWithin_one (f g : E → F) {y}
(hsx : UniqueDiffWithinAt 𝕜 s x) (hyt : UniqueDiffWithinAt 𝕜 t y) :
dist (iteratedFDerivWithin 𝕜 1 f s x) (iteratedFDerivWithin 𝕜 1 g t y)
= dist (fderivWithin 𝕜 f s x) (fderivWithin 𝕜 g t y) := by
simp only [iteratedFDerivWithin_succ_eq_comp_left, comp_apply,
LinearIsometryEquiv.dist_map, iteratedFDerivWithin_zero_eq_comp,
LinearIsometryEquiv.comp_fderivWithin, hsx, hyt]
apply (continuousMultilinearCurryFin0 𝕜 E F).symm.toLinearIsometry.postcomp.dist_map

@[simp]
theorem norm_iteratedFDerivWithin_one (f : E → F) (h : UniqueDiffWithinAt 𝕜 s x) :
‖iteratedFDerivWithin 𝕜 1 f s x‖ = ‖fderivWithin 𝕜 f s x‖ := by
simp only [← norm_fderivWithin_iteratedFDerivWithin,
iteratedFDerivWithin_zero_eq_comp, LinearIsometryEquiv.comp_fderivWithin _ h]
apply (continuousMultilinearCurryFin0 𝕜 E F).symm.toLinearIsometry.norm_toContinuousLinearMap_comp

theorem iteratedFDerivWithin_succ_apply_right {n : ℕ} (hs : UniqueDiffOn 𝕜 s) (hx : x ∈ s)
(m : Fin (n + 1) → E) :
(iteratedFDerivWithin 𝕜 (n + 1) f s x : (Fin (n + 1) → E) → F) m =
Expand Down

0 comments on commit aca5199

Please sign in to comment.