Skip to content

Commit

Permalink
more
Browse files Browse the repository at this point in the history
  • Loading branch information
trivial1711 committed Jan 5, 2025
1 parent 041e8ae commit a548d8a
Show file tree
Hide file tree
Showing 4 changed files with 21 additions and 21 deletions.
2 changes: 1 addition & 1 deletion Mathlib/Algebra/DirectSum/Algebra.lean
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ theorem algHom_ext' ⦃f g : (⨁ i, A i) →ₐ[R] B⦄
theorem algHom_ext ⦃f g : (⨁ i, A i) →ₐ[R] B⦄ (h : ∀ i x, f (of A i x) = g (of A i x)) : f = g :=
algHom_ext' R A fun i => LinearMap.ext <| h i

/-- The piecewise multiplication from the `Mul` instance, as a bundled linear homomorphism.
/-- The piecewise multiplication from the `Mul` instance, as a bundled linear map.
This is the graded version of `LinearMap.mul`, and the linear version of `DirectSum.gMulHom` -/
@[simps]
Expand Down
6 changes: 3 additions & 3 deletions Mathlib/Algebra/Module/SnakeLemma.lean
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,9 @@ The snake lemma is proven in `Algebra/Homology/ShortComplex/SnakeLemma.lean` for
categories, but for definitional equality and universe issues we reprove them here for modules.
## Main results
- `SnakeLemma.δ`: The connecting homomorphism guaranteed by the snake lemma.
- `SnakeLemma.exact_δ_left`: The connecting homomorphism is exact on the right.
- `SnakeLemma.exact_δ_right`: The connecting homomorphism is exact on the left.
- `SnakeLemma.δ`: The connecting linear map guaranteed by the snake lemma.
- `SnakeLemma.exact_δ_left`: The connecting linear map is exact on the right.
- `SnakeLemma.exact_δ_right`: The connecting linear map is exact on the left.
-/

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/LinearAlgebra/Prod.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1030,7 +1030,7 @@ lemma Submodule.exists_eq_graph {G : Submodule S (H × I)} (hf₁ : Bijective (P

/-- **Line test** for module isomorphisms.
Let `f : G → H × I` be a homomorphism to a product of modules. Assume that `f` is surjective onto
Let `f : G → H × I` be a linear map to a product of modules. Assume that `f` is surjective onto
both factors and that the image of `f` intersects every "vertical line" `{(h, i) | i : I}` and every
"horizontal line" `{(h, i) | h : H}` at most once. Then the image of `f` is the graph of some
module isomorphism `f' : H ≃ I`. -/
Expand Down
32 changes: 16 additions & 16 deletions Mathlib/RingTheory/Flat/EquationalCriterion.lean
Original file line number Diff line number Diff line change
Expand Up @@ -25,9 +25,9 @@ The equational criterion for flatness can be stated in the following form
(`Module.Flat.iff_forall_exists_factorization`). Let $M$ be an $R$-module. Then the following two
conditions are equivalent:
* $M$ is flat.
* For all finite index types $\iota$, all elements $f \in R^{\iota}$, and all homomorphisms
* For all finite index types $\iota$, all elements $f \in R^{\iota}$, and all linear maps
$x \colon R^{\iota} \to M$ such that $x(f) = 0$, there exist a finite index type $\kappa$ and module
homomorphisms $a \colon R^{\iota} \to R^{\kappa}$ and $y \colon R^{\kappa} \to M$ such
linear maps $a \colon R^{\iota} \to R^{\kappa}$ and $y \colon R^{\kappa} \to M$ such
that $x = y \circ a$ and $a(f) = 0$.
Of course, the module $R^\iota$ in this statement can be replaced by an arbitrary free module
Expand All @@ -36,12 +36,12 @@ Of course, the module $R^\iota$ in this statement can be replaced by an arbitrar
We also have the following strengthening of the equational criterion for flatness
(`Module.Flat.exists_factorization_of_comp_eq_zero_of_free`): Let $M$ be a
flat module. Let $K$ and $N$ be finite $R$-modules with $N$ free, and let $f \colon K \to N$ and
$x \colon N \to M$ be homomorphisms such that $x \circ f = 0$. Then there exist a finite index type
$x \colon N \to M$ be linear maps such that $x \circ f = 0$. Then there exist a finite index type
$\kappa$ and $R$-linear maps $a \colon N \to R^{\kappa}$ and $y \colon R^{\kappa} \to M$ such
that $x = y \circ a$ and $a \circ f = 0$. We recover the usual equational criterion for flatness if
$K = R$ and $N = R^\iota$. This is used in the proof of Lazard's theorem.
We conclude that every homomorphism from a finitely presented module to a flat module factors
We conclude that every linear map from a finitely presented module to a flat module factors
through a finite free module (`Module.Flat.exists_factorization_of_isFinitelyPresented`).
## References
Expand Down Expand Up @@ -103,11 +103,11 @@ Let $M$ be a module over a commutative ring $R$. The following are equivalent:
* For all ideals $I \subseteq R$, the map $I \otimes M \to M$ is injective.
* Every $\sum_i f_i \otimes x_i$ that vanishes in $R \otimes M$ vanishes trivially.
* Every relation $\sum_i f_i x_i = 0$ in $M$ is trivial.
* For all finite index types $\iota$, all elements $f \in R^{\iota}$, and all homomorphisms
* For all finite index types $\iota$, all elements $f \in R^{\iota}$, and all linear maps
$x \colon R^{\iota} \to M$ such that $x(f) = 0$, there exist a finite index type $\kappa$ and module
homomorphisms $a \colon R^{\iota} \to R^{\kappa}$ and $y \colon R^{\kappa} \to M$ such
linear maps $a \colon R^{\iota} \to R^{\kappa}$ and $y \colon R^{\kappa} \to M$ such
that $x = y \circ a$ and $a(f) = 0$.
* For all finite free modules $N$, all elements $f \in N$, and all homomorphisms $x \colon N \to M$
* For all finite free modules $N$, all elements $f \in N$, and all linear maps $x \colon N \to M$
such that $x(f) = 0$, there exist a finite index type $\kappa$ and $R$-linear maps
$a \colon N \to R^{\kappa}$ and $y \colon R^{\kappa} \to M$ such that $x = y \circ a$ and
$a(f) = 0$. -/
Expand Down Expand Up @@ -203,8 +203,8 @@ theorem of_forall_isTrivialRelation (hfx : ∀ {ι : Type u} [Fintype ι] {f :
[Stacks 00HK](https://stacks.math.columbia.edu/tag/00HK), alternate form.
A module $M$ is flat if and only if for all finite free modules $R^\iota$,
all $f \in R^{\iota}$, and all homomorphisms $x \colon R^{\iota} \to M$ such that $x(f) = 0$, there
exist a finite free module $R^\kappa$ and homomorphisms $a \colon R^{\iota} \to R^{\kappa}$ and
all $f \in R^{\iota}$, and all linear maps $x \colon R^{\iota} \to M$ such that $x(f) = 0$, there
exist a finite free module $R^\kappa$ and linear maps $a \colon R^{\iota} \to R^{\kappa}$ and
$y \colon R^{\kappa} \to M$ such that $x = y \circ a$ and $a(f) = 0$. -/
theorem iff_forall_exists_factorization : Flat R M ↔
∀ {ι : Type u} [Fintype ι] {f : ι →₀ R} {x : (ι →₀ R) →ₗ[R] M}, x f = 0
Expand All @@ -215,8 +215,8 @@ theorem iff_forall_exists_factorization : Flat R M ↔
[Stacks 00HK](https://stacks.math.columbia.edu/tag/00HK), forward direction, alternate form.
Let $M$ be a flat module. Let $R^\iota$ be a finite free module, let $f \in R^{\iota}$ be an
element, and let $x \colon R^{\iota} \to M$ be a homomorphism such that $x(f) = 0$. Then there
exist a finite free module $R^\kappa$ and homomorphisms $a \colon R^{\iota} \to R^{\kappa}$ and
element, and let $x \colon R^{\iota} \to M$ be a linear map such that $x(f) = 0$. Then there
exist a finite free module $R^\kappa$ and linear maps $a \colon R^{\iota} \to R^{\kappa}$ and
$y \colon R^{\kappa} \to M$ such that $x = y \circ a$ and $a(f) = 0$. -/
theorem exists_factorization_of_apply_eq_zero [Flat R M] {ι : Type u} [_root_.Finite ι]
{f : ι →₀ R} {x : (ι →₀ R) →ₗ[R] M} (h : x f = 0) :
Expand All @@ -228,8 +228,8 @@ theorem exists_factorization_of_apply_eq_zero [Flat R M] {ι : Type u} [_root_.F
[Stacks 00HK](https://stacks.math.columbia.edu/tag/00HK), backward direction, alternate form.
Let $M$ be a module over a commutative ring $R$. Suppose that for all finite free modules $R^\iota$,
all $f \in R^{\iota}$, and all homomorphisms $x \colon R^{\iota} \to M$ such that $x(f) = 0$, there
exist a finite free module $R^\kappa$ and homomorphisms $a \colon R^{\iota} \to R^{\kappa}$ and
all $f \in R^{\iota}$, and all linear maps $x \colon R^{\iota} \to M$ such that $x(f) = 0$, there
exist a finite free module $R^\kappa$ and linear maps $a \colon R^{\iota} \to R^{\kappa}$ and
$y \colon R^{\kappa} \to M$ such that $x = y \circ a$ and $a(f) = 0$. Then $M$ is flat. -/
theorem of_forall_exists_factorization (h : ∀ {ι : Type u} [Fintype ι] {f : ι →₀ R}
{x : (ι →₀ R) →ₗ[R] M}, x f = 0
Expand All @@ -240,7 +240,7 @@ theorem of_forall_exists_factorization (h : ∀ {ι : Type u} [Fintype ι] {f :
forward direction, second alternate form.
Let $M$ be a flat module over a commutative ring $R$. Let $N$ be a finite free module over $R$,
let $f \in N$, and let $x \colon N \to M$ be a homomorphism such that $x(f) = 0$. Then there exist a
let $f \in N$, and let $x \colon N \to M$ be a linear map such that $x(f) = 0$. Then there exist a
finite index type $\kappa$ and $R$-linear maps $a \colon N \to R^{\kappa}$ and
$y \colon R^{\kappa} \to M$ such that $x = y \circ a$ and $a(f) = 0$. -/
theorem exists_factorization_of_apply_eq_zero_of_free [Flat R M] {N : Type u} [AddCommGroup N]
Expand All @@ -250,7 +250,7 @@ theorem exists_factorization_of_apply_eq_zero_of_free [Flat R M] {N : Type u} [A
exact ((tfae_equational_criterion R M).out 0 5 rfl rfl).mp ‹Flat R M› h

/-- Let $M$ be a flat module. Let $K$ and $N$ be finite $R$-modules with $N$
free, and let $f \colon K \to N$ and $x \colon N \to M$ be homomorphisms such that
free, and let $f \colon K \to N$ and $x \colon N \to M$ be linear maps such that
$x \circ f = 0$. Then there exist a finite index type $\kappa$ and $R$-linear maps
$a \colon N \to R^{\kappa}$ and $y \colon R^{\kappa} \to M$ such that $x = y \circ a$ and
$a \circ f = 0$. -/
Expand All @@ -276,7 +276,7 @@ theorem exists_factorization_of_comp_eq_zero_of_free [Flat R M] {K N : Type u} [
convert this ⊤ Finite.out
simp only [top_le_iff, ker_eq_top]

/-- Every homomorphism from a finitely presented module to a flat module factors through a finite
/-- Every linear map from a finitely presented module to a flat module factors through a finite
free module. -/
theorem exists_factorization_of_isFinitelyPresented [Flat R M] {P : Type u} [AddCommGroup P]
[Module R P] [FinitePresentation R P] (h₁ : P →ₗ[R] M) :
Expand Down

0 comments on commit a548d8a

Please sign in to comment.