Skip to content

Commit

Permalink
chore: don't import algebra in Data.Multiset.Basic
Browse files Browse the repository at this point in the history
  • Loading branch information
YaelDillies committed Jan 6, 2025
1 parent fceef13 commit 6e707f4
Show file tree
Hide file tree
Showing 8 changed files with 282 additions and 176 deletions.
1 change: 1 addition & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -689,6 +689,7 @@ import Mathlib.Algebra.Order.Group.Instances
import Mathlib.Algebra.Order.Group.Int
import Mathlib.Algebra.Order.Group.Lattice
import Mathlib.Algebra.Order.Group.MinMax
import Mathlib.Algebra.Order.Group.Multiset
import Mathlib.Algebra.Order.Group.Nat
import Mathlib.Algebra.Order.Group.Opposite
import Mathlib.Algebra.Order.Group.OrderIso
Expand Down
3 changes: 2 additions & 1 deletion Mathlib/Algebra/BigOperators/Group/Multiset.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,8 @@ Authors: Mario Carneiro
-/
import Mathlib.Algebra.BigOperators.Group.List
import Mathlib.Algebra.Group.Prod
import Mathlib.Data.Multiset.Basic
import Mathlib.Algebra.Order.Group.Multiset
import Mathlib.Algebra.Order.Sub.Unbundled.Basic

/-!
# Sums and products over multisets
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Algebra/BigOperators/GroupWithZero/Action.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@ Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import Mathlib.Algebra.BigOperators.Finprod
import Mathlib.Algebra.BigOperators.Group.Finset
import Mathlib.Algebra.GroupWithZero.Action.Defs
import Mathlib.Algebra.Order.Group.Multiset
import Mathlib.Data.Finset.Basic
import Mathlib.Data.Multiset.Basic
import Mathlib.Algebra.BigOperators.Finprod

/-!
# Lemmas about group actions on big operators
Expand Down
178 changes: 178 additions & 0 deletions Mathlib/Algebra/Order/Group/Multiset.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,178 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Algebra.Group.Hom.Defs
import Mathlib.Algebra.Group.Nat.Basic
import Mathlib.Algebra.Order.Monoid.Unbundled.ExistsOfLE
import Mathlib.Algebra.Order.Sub.Defs
import Mathlib.Data.Multiset.Basic

/-!
# Multisets form an ordered monoid
This file contains the ordered monoid instance on multisets, and lemmas related to it.
See note [foundational algebra order theory].
-/

open List Nat

variable {α β : Type*}

namespace Multiset

/-! ### Additive monoid -/

instance instAddLeftMono : AddLeftMono (Multiset α) where elim _s _t _u := Multiset.add_le_add_left

instance instAddLeftReflectLE : AddLeftReflectLE (Multiset α) where
elim _s _t _u := Multiset.le_of_add_le_add_left

instance instAddCancelCommMonoid : AddCancelCommMonoid (Multiset α) where
add_comm := Multiset.add_comm
add_assoc := Multiset.add_assoc
zero_add := Multiset.zero_add
add_zero := Multiset.add_zero
add_left_cancel _ _ _ := Multiset.add_right_inj.1
nsmul := nsmulRec

lemma mem_of_mem_nsmul {a : α} {s : Multiset α} {n : ℕ} (h : a ∈ n • s) : a ∈ s := by
induction' n with n ih
· rw [zero_nsmul] at h
exact absurd h (not_mem_zero _)
· rw [succ_nsmul, mem_add] at h
exact h.elim ih id

@[simp]
lemma mem_nsmul {a : α} {s : Multiset α} {n : ℕ} : a ∈ n • s ↔ n ≠ 0 ∧ a ∈ s := by
refine ⟨fun ha ↦ ⟨?_, mem_of_mem_nsmul ha⟩, fun h ↦ ?_⟩
· rintro rfl
simp [zero_nsmul] at ha
obtain ⟨n, rfl⟩ := exists_eq_succ_of_ne_zero h.1
rw [succ_nsmul, mem_add]
exact Or.inr h.2

lemma mem_nsmul_of_ne_zero {a : α} {s : Multiset α} {n : ℕ} (h0 : n ≠ 0) : a ∈ n • s ↔ a ∈ s := by
simp [*]

lemma nsmul_cons {s : Multiset α} (n : ℕ) (a : α) :
n • (a ::ₘ s) = n • ({a} : Multiset α) + n • s := by
rw [← singleton_add, nsmul_add]

/-! ### Cardinality -/

/-- `Multiset.card` bundled as a group hom. -/
@[simps]
def cardHom : Multiset α →+ ℕ where
toFun := card
map_zero' := card_zero
map_add' := card_add

@[simp]
lemma card_nsmul (s : Multiset α) (n : ℕ) : card (n • s) = n * card s := cardHom.map_nsmul ..

/-! ### `Multiset.replicate` -/

/-- `Multiset.replicate` as an `AddMonoidHom`. -/
@[simps]
def replicateAddMonoidHom (a : α) : ℕ →+ Multiset α where
toFun n := replicate n a
map_zero' := replicate_zero a
map_add' _ _ := replicate_add _ _ a

lemma nsmul_replicate {a : α} (n m : ℕ) : n • replicate m a = replicate (n * m) a :=
((replicateAddMonoidHom a).map_nsmul _ _).symm

lemma nsmul_singleton (a : α) (n) : n • ({a} : Multiset α) = replicate n a := by
rw [← replicate_one, nsmul_replicate, mul_one]

/-! ### `Multiset.map` -/

/-- `Multiset.map` as an `AddMonoidHom`. -/
@[simps]
def mapAddMonoidHom (f : α → β) : Multiset α →+ Multiset β where
toFun := map f
map_zero' := map_zero _
map_add' := map_add _

@[simp]
lemma coe_mapAddMonoidHom (f : α → β) : (mapAddMonoidHom f : Multiset α → Multiset β) = map f := rfl

lemma map_nsmul (f : α → β) (n : ℕ) (s) : map f (n • s) = n • map f s :=
(mapAddMonoidHom f).map_nsmul _ _

/-! ### Subtraction -/

section
variable [DecidableEq α]

instance : OrderedSub (Multiset α) where tsub_le_iff_right _n _m _k := Multiset.sub_le_iff_le_add

instance : ExistsAddOfLE (Multiset α) where
exists_add_of_le h := leInductionOn h fun s ↦
let ⟨l, p⟩ := s.exists_perm_append; ⟨l, Quot.sound p⟩

end

/-! ### `Multiset.filter` -/

section
variable (p : α → Prop) [DecidablePred p]

lemma filter_nsmul (s : Multiset α) (n : ℕ) : filter p (n • s) = n • filter p s := by
refine s.induction_on ?_ ?_
· simp only [filter_zero, nsmul_zero]
· intro a ha ih
rw [nsmul_cons, filter_add, ih, filter_cons, nsmul_add]
congr
split_ifs with hp <;>
· simp only [filter_eq_self, nsmul_zero, filter_eq_nil]
intro b hb
rwa [mem_singleton.mp (mem_of_mem_nsmul hb)]

/-! ### countP -/

@[simp]
lemma countP_nsmul (s) (n : ℕ) : countP p (n • s) = n * countP p s := by
induction n <;> simp [*, succ_nsmul, succ_mul, zero_nsmul]

/-- `countP p`, the number of elements of a multiset satisfying `p`, promoted to an
`AddMonoidHom`. -/
def countPAddMonoidHom : Multiset α →+ ℕ where
toFun := countP p
map_zero' := countP_zero _
map_add' := countP_add _

@[simp] lemma coe_countPAddMonoidHom : (countPAddMonoidHom p : Multiset α → ℕ) = countP p := rfl

end

/-! ### Multiplicity of an element -/

section
variable [DecidableEq α] {s : Multiset α}

/-- `count a`, the multiplicity of `a` in a multiset, promoted to an `AddMonoidHom`. -/
def countAddMonoidHom (a : α) : Multiset α →+ ℕ :=
countPAddMonoidHom (a = ·)

@[simp]
lemma coe_countAddMonoidHom (a : α) : (countAddMonoidHom a : Multiset α → ℕ) = count a := rfl

@[simp]
lemma count_nsmul (a : α) (n s) : count a (n • s) = n * count a s := by
induction n <;> simp [*, succ_nsmul, succ_mul, zero_nsmul]

end

-- TODO: This should be `addMonoidHom_ext`
@[ext]
lemma addHom_ext [AddZeroClass β] ⦃f g : Multiset α →+ β⦄ (h : ∀ x, f {x} = g {x}) : f = g := by
ext s
induction' s using Multiset.induction_on with a s ih
· simp only [_root_.map_zero]
· simp only [← singleton_add, _root_.map_add, ih, h]

end Multiset
Loading

0 comments on commit 6e707f4

Please sign in to comment.