Skip to content

Commit

Permalink
Apply suggestions from code review
Browse files Browse the repository at this point in the history
Co-authored-by: Christian Merten <[email protected]>
  • Loading branch information
erdOne and chrisflav authored Jan 6, 2025
1 parent 65beb30 commit 4574791
Show file tree
Hide file tree
Showing 3 changed files with 4 additions and 4 deletions.
2 changes: 1 addition & 1 deletion Mathlib/RingTheory/Ideal/Cotangent.lean
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ theorem cotangentIdeal_square (I : Ideal R) : I.cotangentIdeal ^ 2 = ⊥ := by
rw [sub_zero, pow_two]; exact Ideal.mul_mem_mul hx hy
· intro x y hx hy; exact add_mem hx hy

lemma mk_mem_cotangentIdeal {I : Ideal R} {x} :
lemma mk_mem_cotangentIdeal {I : Ideal R} {x : R} :
Quotient.mk (I ^ 2) x ∈ I.cotangentIdeal ↔ x ∈ I := by
refine ⟨fun ⟨y, hy, e⟩ ↦ ?_, fun h ↦ ⟨x, h, rfl⟩⟩
simpa using sub_mem hy (Ideal.pow_le_self two_ne_zero
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/RingTheory/Kaehler/CotangentComplex.lean
Original file line number Diff line number Diff line change
Expand Up @@ -367,7 +367,7 @@ def H1Cotangent.equiv {P₁ P₂ : Extension R S} (f₁ : P₁.Hom P₂) (f₂ :
right_inv x :=
show (map f₁ ∘ₗ map f₂) x = LinearMap.id x by
rw [← Extension.H1Cotangent.map_id, eq_comm, map_eq _ (f₁.comp f₂),
Extension.H1Cotangent.map_comp]; rfl
Extension.H1Cotangent.map_comp]; rfl

end Extension

Expand Down
4 changes: 2 additions & 2 deletions Mathlib/RingTheory/Smooth/Kaehler.lean
Original file line number Diff line number Diff line change
Expand Up @@ -519,7 +519,7 @@ lemma H1Cotangent.map_toInfinitesimal_bijective (P : Extension.{u} R S) :

/--
Given extensions `0 → I₁ → P₁ → S → 0` and `0 → I₂ → P₂ → S → 0` with `P₁` formally smooth,
there is an arbitrary map `P₁/I₁² → P₂/I₂²` of extensions.
this is an arbitrarily chosen map `P₁/I₁² → P₂/I₂²` of extensions.
-/
noncomputable
def homInfinitesimal (P₁ P₂ : Extension R S) [FormallySmooth R P₁.Ring] :
Expand Down Expand Up @@ -557,7 +557,7 @@ def H1Cotangent.equivOfFormallySmooth (P₁ P₂ : Extension R S)

/-- Any formally smooth extension can be used to calculate `H¹(L_{S/R})`. -/
noncomputable
def equivH1Cotangent (P : Extension R S) [FormallySmooth R P.Ring] :
def equivH1CotangentOfFormallySmooth (P : Extension R S) [FormallySmooth R P.Ring] :
P.H1Cotangent ≃ₗ[S] H1Cotangent R S :=
have : FormallySmooth R (Generators.self R S).toExtension.Ring :=
inferInstanceAs (FormallySmooth R (MvPolynomial _ _))
Expand Down

0 comments on commit 4574791

Please sign in to comment.