Skip to content

Commit

Permalink
Trigger CI for leanprover/lean4#2722
Browse files Browse the repository at this point in the history
  • Loading branch information
leanprover-community-mathlib4-bot committed Oct 22, 2023
2 parents dacbe82 + 6921e82 commit 44ee564
Show file tree
Hide file tree
Showing 4 changed files with 71 additions and 6 deletions.
9 changes: 3 additions & 6 deletions Mathlib/Algebra/Star/CHSH.lean
Original file line number Diff line number Diff line change
Expand Up @@ -107,12 +107,9 @@ theorem CHSH_id [CommRing R] {A₀ A₁ B₀ B₁ : R} (A₀_inv : A₀ ^ 2 = 1)
-- If we had a Gröbner basis algorithm, this would be trivial.
-- Without one, it is somewhat tedious!
rw [← sub_eq_zero]
repeat'
ring_nf
simp only [A₁_inv, B₁_inv, sub_eq_add_neg, add_mul, mul_add, sub_mul, mul_sub, add_assoc,
neg_add, neg_sub, sub_add, sub_sub, neg_mul, ← sq, A₀_inv, B₀_inv, ← sq, ← mul_assoc, one_mul,
mul_one, add_right_neg, add_zero, sub_eq_add_neg, A₀_inv, mul_one, add_right_neg,
zero_mul]
ring_nf
simp_all
ring_nf
set_option linter.uppercaseLean3 false in
#align CHSH_id CHSH_id

Expand Down
38 changes: 38 additions & 0 deletions Mathlib/Tactic/CancelDenoms/Core.lean
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,13 @@ theorem sub_subst {α} [Ring α] {n e1 e2 t1 t2 : α} (h1 : n * e1 = t1) (h2 : n
theorem neg_subst {α} [Ring α] {n e t : α} (h1 : n * e = t) : n * -e = -t := by simp [*]
#align cancel_factors.neg_subst CancelDenoms.neg_subst

theorem pow_subst {α} [CommRing α] {n e1 t1 k l : α} {e2 : ℕ}
(h1 : n * e1 = t1) (h2 : l * n ^ e2 = k) : k * (e1 ^ e2) = l * t1 ^ e2 := by
rw [←h2, ←h1, mul_pow, mul_assoc]

theorem inv_subst {α} [Field α] {n k e : α} (h2 : e ≠ 0) (h3 : n * e = k) :
k * (e ⁻¹) = n := by rw [←div_eq_mul_inv, ←h3, mul_div_cancel _ h2]

theorem cancel_factors_lt {α} [LinearOrderedField α] {a b ad bd a' b' gcd : α}
(ha : ad * a = a') (hb : bd * b = b') (had : 0 < ad) (hbd : 0 < bd) (hgcd : 0 < gcd) :
(a < b) = (1 / gcd * (bd * a') < 1 / gcd * (ad * b')) := by
Expand Down Expand Up @@ -129,6 +136,17 @@ partial def findCancelFactor (e : Expr) : ℕ × Tree ℕ :=
(n, .node n t1 <| .node q .nil .nil)
| none => (1, .node 1 .nil .nil)
| (``Neg.neg, #[_, _, e]) => findCancelFactor e
| (``HPow.hPow, #[_, ℕ, _, _, e1, e2]) =>
match e2.nat? with
| some k =>
let (v1, t1) := findCancelFactor e1
let n := v1 ^ k
(n, .node n t1 <| .node k .nil .nil)
| none => (1, .node 1 .nil .nil)
| (``Inv.inv, #[_, _, e]) =>
match e.nat? with
| some q => (q, .node q .nil <| .node q .nil .nil)
| none => (1, .node 1 .nil .nil)
| _ => (1, .node 1 .nil .nil)

def synthesizeUsingNormNum (type : Expr) : MetaM Expr := do
Expand All @@ -145,6 +163,7 @@ by `findCancelFactor`.
partial def mkProdPrf (α : Q(Type u)) (sα : Q(Field $α)) (v : ℕ) (t : Tree ℕ)
(e : Q($α)) : MetaM Expr := do
let amwo ← synthInstanceQ q(AddMonoidWithOne $α)
trace[CancelDenoms] "mkProdPrf {e} {v}"
match t, e with
| .node _ lhs rhs, ~q($e1 + $e2) => do
let v1 ← mkProdPrf α sα v lhs e1
Expand All @@ -155,6 +174,7 @@ partial def mkProdPrf (α : Q(Type u)) (sα : Q(Field $α)) (v : ℕ) (t : Tree
let v2 ← mkProdPrf α sα v rhs e2
mkAppM ``CancelDenoms.sub_subst #[v1, v2]
| .node _ lhs@(.node ln _ _) rhs, ~q($e1 * $e2) => do
trace[CancelDenoms] "recursing into mul"
let v1 ← mkProdPrf α sα ln lhs e1
let v2 ← mkProdPrf α sα (v / ln) rhs e2
have ln' := (← mkOfNat α amwo <| mkRawNatLit ln).1
Expand All @@ -177,6 +197,24 @@ partial def mkProdPrf (α : Q(Type u)) (sα : Q(Field $α)) (v : ℕ) (t : Tree
| t, ~q(-$e) => do
let v ← mkProdPrf α sα v t e
mkAppM ``CancelDenoms.neg_subst #[v]
| .node _ lhs@(.node k1 _ _) (.node k2 .nil .nil), ~q($e1 ^ $e2) => do
let v1 ← mkProdPrf α sα k1 lhs e1
have l := v / (k1 ^ k2)
have k1' := (← mkOfNat α amwo <| mkRawNatLit k1).1
have v' := (← mkOfNat α amwo <| mkRawNatLit v).1
have l' := (← mkOfNat α amwo <| mkRawNatLit l).1
let ntp : Q(Prop) := q($l' * $k1' ^ $e2 = $v')
let npf ← synthesizeUsingNormNum ntp
mkAppM ``CancelDenoms.pow_subst #[v1, npf]
| .node _ .nil (.node rn _ _), ~q($e ⁻¹) => do
have rn' := (← mkOfNat α amwo <| mkRawNatLit rn).1
have vrn' := (← mkOfNat α amwo <| mkRawNatLit <| v / rn).1
have v' := (← mkOfNat α amwo <| mkRawNatLit <| v).1
let ntp : Q(Prop) := q($rn' ≠ 0)
let npf ← synthesizeUsingNormNum ntp
let ntp2 : Q(Prop) := q($vrn' * $rn' = $v')
let npf2 ← synthesizeUsingNormNum ntp2
mkAppM ``CancelDenoms.inv_subst #[npf, npf2]
| _, _ => do
have v' := (← mkOfNat α amwo <| mkRawNatLit <| v).1
let e' ← mkAppM ``HMul.hMul #[v', e]
Expand Down
28 changes: 28 additions & 0 deletions test/cancel_denoms.lean
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,34 @@ example (h : 2 * (4 * a + d * 5 * b) ≠ (40 * c - 32 * a + b * 2 * 5 * d - 40 *
cancel_denoms
assumption

example (h : 27 ≤ (a + 3) ^ 3) : 1 ≤ (a / 3 + 1) ^ 3 := by
cancel_denoms
assumption

example (h : a > 2) : 1 < 2⁻¹ * a := by
cancel_denoms
assumption

example (h : 6 * b = a⁻¹ * 3 + c * 2): b = a⁻¹ * 2⁻¹ + c * 3⁻¹ := by
cancel_denoms
assumption

example (h : a * 5 + b * 6 = 30 * c) : a * 2⁻¹ * 3⁻¹ + b * 5⁻¹ = c := by
cancel_denoms
assumption

example (h : 5 * a^2 + 4 * b^3 = 0) : a ^ 2 / 4 + b ^ 3 / 5 = 0 := by
cancel_denoms
assumption

example (h : 5 * a^3 * b^2 = 72 * c) : (a/2)^3 * (b/3)^2 = c/5 := by
cancel_denoms
assumption

example (h: (5 * a ^ 3 + 8)^2 = 1600 * c) : ((a / 2) ^ 3 + 1/5)^2 = c := by
cancel_denoms
assumption

end

section
Expand Down
2 changes: 2 additions & 0 deletions test/linarith.lean
Original file line number Diff line number Diff line change
Expand Up @@ -524,3 +524,5 @@ noncomputable instance : LinearOrderedField (P c d) := test_sorry

example (p : P PUnit.{u+1} PUnit.{v+1}) (h : 0 < p) : 0 < 2 * p := by
linarith

example (x : ℚ) (h : x * (2⁻¹ + 2 / 3) = 1) : x = 6 / 7 := by linarith

0 comments on commit 44ee564

Please sign in to comment.