-
Notifications
You must be signed in to change notification settings - Fork 367
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(RingTheory): being unramified is a local property (#20323)
Co-authored-by: Andrew Yang <[email protected]>
- Loading branch information
Showing
6 changed files
with
233 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
/- | ||
Copyright (c) 2024 Andrew Yang. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Andrew Yang | ||
-/ | ||
import Mathlib.RingTheory.Etale.Basic | ||
import Mathlib.RingTheory.Kaehler.JacobiZariski | ||
import Mathlib.RingTheory.Localization.BaseChange | ||
import Mathlib.RingTheory.Smooth.Kaehler | ||
|
||
/-! | ||
# The differential module and etale algebras | ||
## Main results | ||
`KaehlerDifferential.tensorKaehlerEquivOfFormallyEtale`: | ||
The canonical isomorphism `T ⊗[S] Ω[S⁄R] ≃ₗ[T] Ω[T⁄R]` for `T` a formally etale `S`-algebra. | ||
-/ | ||
|
||
universe u | ||
|
||
variable (R S T : Type u) [CommRing R] [CommRing S] [CommRing T] | ||
variable [Algebra R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] | ||
|
||
open TensorProduct | ||
|
||
/-- | ||
The canonical isomorphism `T ⊗[S] Ω[S⁄R] ≃ₗ[T] Ω[T⁄R]` for `T` a formally etale `S`-algebra. | ||
Also see `S ⊗[R] Ω[A⁄R] ≃ₗ[S] Ω[S ⊗[R] A⁄S]` at `KaehlerDifferential.tensorKaehlerEquiv`. | ||
-/ | ||
@[simps! apply] noncomputable | ||
def KaehlerDifferential.tensorKaehlerEquivOfFormallyEtale [Algebra.FormallyEtale S T] : | ||
T ⊗[S] Ω[S⁄R] ≃ₗ[T] Ω[T⁄R] := by | ||
refine LinearEquiv.ofBijective (mapBaseChange R S T) | ||
⟨?_, fun x ↦ (KaehlerDifferential.exact_mapBaseChange_map R S T x).mp (Subsingleton.elim _ _)⟩ | ||
rw [injective_iff_map_eq_zero] | ||
intros x hx | ||
obtain ⟨x, rfl⟩ := (Algebra.H1Cotangent.exact_δ_mapBaseChange R S T x).mp hx | ||
rw [Subsingleton.elim x 0, map_zero] | ||
|
||
lemma KaehlerDifferential.isBaseChange_of_formallyEtale [Algebra.FormallyEtale S T] : | ||
IsBaseChange T (map R R S T) := by | ||
show Function.Bijective _ | ||
convert (tensorKaehlerEquivOfFormallyEtale R S T).bijective using 1 | ||
show _ = ((tensorKaehlerEquivOfFormallyEtale | ||
R S T).toLinearMap.restrictScalars S : T ⊗[S] Ω[S⁄R] → _) | ||
congr! | ||
ext | ||
simp | ||
|
||
instance KaehlerDifferential.isLocalizedModule_map (M : Submonoid S) [IsLocalization M T] : | ||
IsLocalizedModule M (map R R S T) := | ||
have := Algebra.FormallyEtale.of_isLocalization (Rₘ := T) M | ||
(isLocalizedModule_iff_isBaseChange M T _).mpr (isBaseChange_of_formallyEtale R S T) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
/- | ||
Copyright (c) 2024 Andrew Yang. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Andrew Yang | ||
-/ | ||
import Mathlib.RingTheory.Unramified.Locus | ||
import Mathlib.RingTheory.LocalProperties.Basic | ||
|
||
/-! | ||
# The meta properties of unramified ring homomorphisms. | ||
-/ | ||
|
||
namespace RingHom | ||
|
||
variable {R : Type*} {S : Type*} [CommRing R] [CommRing S] | ||
|
||
/-- | ||
A ring homomorphism `R →+* A` is formally unramified if `Ω[A⁄R]` is trivial. | ||
See `Algebra.FormallyUnramified`. | ||
-/ | ||
@[algebraize Algebra.FormallyUnramified] | ||
def FormallyUnramified (f : R →+* S) : Prop := | ||
letI := f.toAlgebra | ||
Algebra.FormallyUnramified R S | ||
|
||
lemma formallyUnramified_algebraMap [Algebra R S] : | ||
(algebraMap R S).FormallyUnramified ↔ Algebra.FormallyUnramified R S := by | ||
delta FormallyUnramified | ||
congr! | ||
exact Algebra.algebra_ext _ _ fun _ ↦ rfl | ||
|
||
namespace FormallyUnramified | ||
|
||
lemma stableUnderComposition : | ||
StableUnderComposition FormallyUnramified := by | ||
intros R S T _ _ _ f g _ _ | ||
algebraize [f, g, g.comp f] | ||
exact .comp R S T | ||
|
||
lemma respectsIso : | ||
RespectsIso FormallyUnramified := by | ||
refine stableUnderComposition.respectsIso ?_ | ||
intros R S _ _ e | ||
letI := e.toRingHom.toAlgebra | ||
exact Algebra.FormallyUnramified.of_surjective (Algebra.ofId R S) e.surjective | ||
|
||
lemma isStableUnderBaseChange : | ||
IsStableUnderBaseChange FormallyUnramified := by | ||
refine .mk _ respectsIso ?_ | ||
intros R S T _ _ _ _ _ h | ||
show (algebraMap _ _).FormallyUnramified | ||
rw [formallyUnramified_algebraMap] at h ⊢ | ||
infer_instance | ||
|
||
lemma holdsForLocalizationAway : | ||
HoldsForLocalizationAway FormallyUnramified := by | ||
intros R S _ _ _ r _ | ||
rw [formallyUnramified_algebraMap] | ||
exact .of_isLocalization (.powers r) | ||
|
||
lemma ofLocalizationPrime : | ||
OfLocalizationPrime FormallyUnramified := by | ||
intros R S _ _ f H | ||
algebraize [f] | ||
rw [FormallyUnramified, ← Algebra.unramifiedLocus_eq_univ_iff, Set.eq_univ_iff_forall] | ||
intro x | ||
let Rₓ := Localization.AtPrime (x.asIdeal.comap f) | ||
let Sₓ := Localization.AtPrime x.asIdeal | ||
have := Algebra.FormallyUnramified.of_isLocalization (Rₘ := Rₓ) (x.asIdeal.comap f).primeCompl | ||
letI : Algebra Rₓ Sₓ := (Localization.localRingHom _ _ _ rfl).toAlgebra | ||
have : IsScalarTower R Rₓ Sₓ := .of_algebraMap_eq | ||
fun x ↦ (Localization.localRingHom_to_map _ _ _ rfl x).symm | ||
have : Algebra.FormallyUnramified Rₓ Sₓ := H _ _ | ||
exact Algebra.FormallyUnramified.comp R Rₓ Sₓ | ||
|
||
lemma ofLocalizationSpanTarget : | ||
OfLocalizationSpanTarget FormallyUnramified := by | ||
intros R S _ _ f s hs H | ||
algebraize [f] | ||
rw [FormallyUnramified, ← Algebra.unramifiedLocus_eq_univ_iff, Set.eq_univ_iff_forall] | ||
intro x | ||
obtain ⟨r, hr, hrx⟩ : ∃ r ∈ s, x ∈ PrimeSpectrum.basicOpen r := by | ||
simpa using (PrimeSpectrum.iSup_basicOpen_eq_top_iff'.mpr hs).ge | ||
(TopologicalSpace.Opens.mem_top x) | ||
refine Algebra.basicOpen_subset_unramifiedLocus_iff.mpr ?_ hrx | ||
convert H ⟨r, hr⟩ | ||
dsimp | ||
rw [← algebraMap_toAlgebra f, ← IsScalarTower.algebraMap_eq, | ||
formallyUnramified_algebraMap] | ||
|
||
lemma propertyIsLocal : | ||
PropertyIsLocal FormallyUnramified := by | ||
constructor | ||
· intro R S _ _ f r R' S' _ _ _ _ _ _ H | ||
algebraize [f, (algebraMap S S').comp f, IsLocalization.Away.map R' S' f r] | ||
have := Algebra.FormallyUnramified.of_isLocalization (Rₘ := S') (.powers (f r)) | ||
have := Algebra.FormallyUnramified.comp R S S' | ||
have H : Submonoid.powers r ≤ (Submonoid.powers (f r)).comap f := by | ||
rintro x ⟨n, rfl⟩; exact ⟨n, by simp⟩ | ||
have : IsScalarTower R R' S' := .of_algebraMap_eq' (IsLocalization.map_comp H).symm | ||
exact Algebra.FormallyUnramified.of_comp R R' S' | ||
· exact ofLocalizationSpanTarget | ||
· exact ofLocalizationSpanTarget.ofLocalizationSpan | ||
(stableUnderComposition.stableUnderCompositionWithLocalizationAway | ||
holdsForLocalizationAway).1 | ||
· exact (stableUnderComposition.stableUnderCompositionWithLocalizationAway | ||
holdsForLocalizationAway).2 | ||
|
||
end RingHom.FormallyUnramified |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
/- | ||
Copyright (c) 2024 Andrew Yang. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Andrew Yang | ||
-/ | ||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic | ||
import Mathlib.RingTheory.Etale.Kaehler | ||
import Mathlib.RingTheory.Support | ||
|
||
/-! | ||
# Unramified locus of an algebra | ||
## Main results | ||
- `Algebra.unramifiedLocus` : The set of primes that is unramified over the base. | ||
- `Algebra.basicOpen_subset_unramifiedLocus_iff` : | ||
`D(f)` is contained in the unramified locus if and only if `A_f` is unramified over `R`. | ||
- `Algebra.unramifiedLocus_eq_univ_iff` : | ||
The unramified locus is the whole spectrum if and only if `A` is unramified over `R`. | ||
- `Algebra.isOpen_unramifiedLocus` : | ||
If `A` is (essentially) of finite type over `R`, then the unramified locus is open. | ||
-/ | ||
|
||
universe u | ||
|
||
variable (R A : Type u) [CommRing R] [CommRing A] [Algebra R A] | ||
|
||
namespace Algebra | ||
|
||
/-- `Algebra.unramifiedLocus R A` is the set of primes `p` of `A` | ||
such that `Aₚ` is formally unramified over `R`. -/ | ||
def unramifiedLocus : Set (PrimeSpectrum A) := | ||
{ p | Algebra.FormallyUnramified R (Localization.AtPrime p.asIdeal) } | ||
|
||
variable {R A} | ||
|
||
lemma unramifiedLocus_eq_compl_support : | ||
unramifiedLocus R A = (Module.support A (Ω[A⁄R]))ᶜ := by | ||
ext p | ||
simp only [Set.mem_compl_iff, Module.not_mem_support_iff] | ||
have := IsLocalizedModule.iso p.asIdeal.primeCompl | ||
(KaehlerDifferential.map R R A (Localization.AtPrime p.asIdeal)) | ||
exact (Algebra.formallyUnramified_iff _ _).trans this.subsingleton_congr.symm | ||
|
||
lemma basicOpen_subset_unramifiedLocus_iff {f : A} : | ||
↑(PrimeSpectrum.basicOpen f) ⊆ unramifiedLocus R A ↔ | ||
Algebra.FormallyUnramified R (Localization.Away f) := by | ||
rw [unramifiedLocus_eq_compl_support, Set.subset_compl_comm, | ||
PrimeSpectrum.basicOpen_eq_zeroLocus_compl, compl_compl, | ||
← LocalizedModule.subsingleton_iff_support_subset, Algebra.formallyUnramified_iff] | ||
exact (IsLocalizedModule.iso (.powers f) | ||
(KaehlerDifferential.map R R A (Localization.Away f))).subsingleton_congr | ||
|
||
lemma unramifiedLocus_eq_univ_iff : | ||
unramifiedLocus R A = Set.univ ↔ Algebra.FormallyUnramified R A := by | ||
rw [unramifiedLocus_eq_compl_support, compl_eq_comm, Set.compl_univ, eq_comm, | ||
Module.support_eq_empty_iff, Algebra.formallyUnramified_iff] | ||
|
||
lemma isOpen_unramifiedLocus [EssFiniteType R A] : IsOpen (unramifiedLocus R A) := by | ||
rw [unramifiedLocus_eq_compl_support, Module.support_eq_zeroLocus] | ||
exact (PrimeSpectrum.isClosed_zeroLocus _).isOpen_compl | ||
|
||
end Algebra |